Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Lamminen, Noora

  • Google
  • 6
  • 32
  • 69

Tampere University

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (6/6 displayed)

  • 2024Assessing the Environmental Impact of Pnictogen-based Perovskite-Inspired Materials for Indoor Photovoltaics2citations
  • 2024Simplifying perovskite solar cell fabrication for materials testing : how to use unetched substrates with the aid of a three-dimensionally printed cell holdercitations
  • 2023Triple A-Site Cation Mixing in 2D Perovskite-Inspired Antimony Halide Absorbers for Efficient Indoor Photovoltaics33citations
  • 2023Triple A-Site Cation Mixing in 2D Perovskite-Inspired Antimony Halide Absorbers for Efficient Indoor Photovoltaics33citations
  • 2022Flexible Organic Photovoltaics with Star-Shaped Nonfullerene Acceptors End Capped with Indene Malononitrile and Barbiturate Derivatives1citations
  • 2022Development of antimony-based perovskite-inspired solar cellscitations

Places of action

Chart of shared publication
Franco, Iván P.
1 / 3 shared
Holappa, Ville
1 / 4 shared
Alberola-Borràs, Jaume Adrià
1 / 1 shared
Vivo, Paola
5 / 46 shared
Grandhi, G. Krishnamurthy
2 / 17 shared
Vidal, Rosario
1 / 5 shared
Miettunen, Kati
1 / 16 shared
Mäkinen, Paavo
3 / 4 shared
Hadadian, Mahboubeh
1 / 5 shared
García, Joaquín Valdez
1 / 1 shared
Nizamov, Rustem
1 / 2 shared
Pasanen, Hannu
2 / 4 shared
Liu, Maning
3 / 28 shared
Ali-Löytty, Harri
2 / 44 shared
Matuhina, Anastasia
2 / 7 shared
Pavone, Michele
2 / 8 shared
Grandhi, Murthy
2 / 2 shared
Munoz-Garcia, Ana Belen
2 / 2 shared
Fasulo, Francesca
2 / 2 shared
Hiltunen, Arto J.
1 / 5 shared
Efimov, Alexander
2 / 12 shared
Lahtonen, Kimmo
2 / 38 shared
Al-Anesi, Basheer
2 / 8 shared
Hiltunen, Arto
2 / 4 shared
Berdin, Alex
1 / 1 shared
Suhonen, Riikka
1 / 11 shared
Deng, Zhifeng
1 / 1 shared
Fedele, Chiara
1 / 1 shared
Revoju, Srikanth
1 / 1 shared
Zhang, Haichang
1 / 1 shared
Ylikunnari, Mari
1 / 6 shared
Kraft, Thomas M.
1 / 7 shared
Chart of publication period
2024
2023
2022

Co-Authors (by relevance)

  • Franco, Iván P.
  • Holappa, Ville
  • Alberola-Borràs, Jaume Adrià
  • Vivo, Paola
  • Grandhi, G. Krishnamurthy
  • Vidal, Rosario
  • Miettunen, Kati
  • Mäkinen, Paavo
  • Hadadian, Mahboubeh
  • García, Joaquín Valdez
  • Nizamov, Rustem
  • Pasanen, Hannu
  • Liu, Maning
  • Ali-Löytty, Harri
  • Matuhina, Anastasia
  • Pavone, Michele
  • Grandhi, Murthy
  • Munoz-Garcia, Ana Belen
  • Fasulo, Francesca
  • Hiltunen, Arto J.
  • Efimov, Alexander
  • Lahtonen, Kimmo
  • Al-Anesi, Basheer
  • Hiltunen, Arto
  • Berdin, Alex
  • Suhonen, Riikka
  • Deng, Zhifeng
  • Fedele, Chiara
  • Revoju, Srikanth
  • Zhang, Haichang
  • Ylikunnari, Mari
  • Kraft, Thomas M.
OrganizationsLocationPeople

article

Triple A-Site Cation Mixing in 2D Perovskite-Inspired Antimony Halide Absorbers for Efficient Indoor Photovoltaics

  • Pasanen, Hannu
  • Liu, Maning
  • Ali-Löytty, Harri
  • Matuhina, Anastasia
  • Mäkinen, Paavo
  • Pavone, Michele
  • Grandhi, Murthy
  • Munoz-Garcia, Ana Belen
  • Lamminen, Noora
  • Fasulo, Francesca
  • Hiltunen, Arto J.
  • Efimov, Alexander
  • Lahtonen, Kimmo
  • Vivo, Paola
Abstract

Antimony-based perovskite-inspired materials (PIMs) are solution-processable halide absorbers with interesting optoelectronic properties, low toxicity, and good intrinsic stability. Their bandgaps around 2 eV make them particularly suited for indoor photovoltaics (IPVs). Yet, so far only the fully inorganic Cs3Sb2ClxI9−x composition has been employed as a light-harvesting layer in IPVs. Herein, the first triple-cation Sb-based PIM (CsMAFA-Sb) in which the A-site of the A3Sb2X9 structure consists of inorganic cesium alloyed with organic methylammonium (MA) and formamidinium (FA) cations is introduced. Simultaneously, the X-site is tuned to guarantee a 2D structure while keeping the bandgap nearly unchanged. The presence of three A-site cations is essential to reduce the trap-assisted recombination pathways and achieve high performance in both outdoor and indoor photovoltaics. The external quantum efficiency peak of 77% and the indoor power conversion efficiency of 6.4% are the highest values ever reported for pnictohalide-based photovoltaics. Upon doping of the P3HT hole-transport layer with F4-TCNQ, the power conversion efficiency of CsMAFA-Sb devices is fully retained compared to the initial value after nearly 150 days of storage in dry air. This work provides an effective compositional strategy to inspire new perspectives in the PIM design for IPVs with competitive performance and air stability.

Topics
  • perovskite
  • impedance spectroscopy
  • toxicity
  • power conversion efficiency
  • Antimony