People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Fuchs, Till
University of Giessen
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (14/14 displayed)
- 2024SEI growth on Lithium metal anodes in solid-state batteries quantified with coulometric titration time analysis
- 2023Non‐Linear Kinetics of The Lithium Metal Anode on Li6PS5Cl at High Current Density: Dendrite Growth and the Role of Lithium Microstructure on Creepcitations
- 2023Overcoming Anode Instability in Solid‐State Batteries through Control of the Lithium Metal Microstructurecitations
- 2023Current‐Dependent Lithium Metal Growth Modes in “Anode‐Free” Solid‐State Batteries at the Cu|LLZO Interfacecitations
- 2023SEI growth on Lithium metal anodes in solid-state batteries quantified with coulometric titration time analysiscitations
- 2023Kinetics and Pore Formation of the Sodium Metal Anode on NASICON‐Type Na$_{3.4}$ Zr$_2$Si$_{2.4}$P$_{0.6}$O$_{12}$ for Sodium Solid‐State Batteries
- 2023Morphological Challenges at the Interface of Lithium Metal and Electrolytes in Garnet-type Solid-State Batteries
- 2023Deposition of Sodium Metal at the Copper‐NaSICON Interface for Reservoir‐Free Solid‐State Sodium Batteriescitations
- 2023Evaluating the Use of Critical Current Density Tests of Symmetric Lithium Transference Cells with Solid Electrolytescitations
- 2022In Situ Investigation of Lithium Metal–Solid Electrolyte Anode Interfaces with ToF‐SIMScitations
- 2022Increasing the Pressure‐Free Stripping Capacity of the Lithium Metal Anode in Solid‐State‐Batteries by Carbon Nanotubescitations
- 2022Kinetics and Pore Formation of the Sodium Metal Anode on NASICON‐Type Na$_{3.4}$ Zr$_2$Si$_{2.4}$P$_{0.6}$O$_{12}$ for Sodium Solid‐State Batteriescitations
- 2022Morphological Challenges at the Interface of Lithium Metal and Electrolytes in Garnet-type Solid-State Batteries
- 2021Working principle of an ionic liquid interlayer during pressureless lithium stripping on Li6.25Al0.25La3Zr2O12 (LLZO) garnet‐type solid electrolytecitations
Places of action
Organizations | Location | People |
---|
article
Current‐Dependent Lithium Metal Growth Modes in “Anode‐Free” Solid‐State Batteries at the Cu|LLZO Interface
Abstract
Controlling the lithium growth morphology in lithium reservoir-free cells (RFCs), so-called “anode-free” solid-state batteries, is of key interest to ensure stable battery operation. Despite several benefits of RFCs like improved energy density and easier fabrication, issues during the charging of the cell hinder the transition from lithium metal batteries with a lithium reservoir layer to RFCs. In RFCs, the lithium metal anode is plated during the first charging step at the interface between a metal current collector and the solid electrolyte, which is prone to highly heterogeneous growth instead of the desired homogeneous film-like growth. Herein, the lithium morphology during the first charging step in RFCs is explored as a function of current density and current collector thickness. Using operando scanning electron microscopy, an increase in the lithium particle density is observed with increasing current density at the Cu|Li6.25Al0.25La3Zr2O12 interface. This observation is then applied to improve the area coverage of lithium by pulsed plating. It is also shown that thin current collectors (d = 100 nm) are unsuited for RFCs, as lithium whiskers penetrate them, resulting in highly heterogeneous interfaces. This suggests the use of thicker metal layers (several µm) to mitigate whisker penetration and facilitate homogeneous lithium plating.