People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Bach, Udo
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (19/19 displayed)
- 2024The balancing act between high electronic and low ionic transport influenced by perovskite grain boundariescitations
- 2024Ester-functionalised polythiophene interlayers for enhanced performance and stability of perovskite solar cellscitations
- 2023Machine Learning Enhanced High‐Throughput Fabrication and Optimization of Quasi‐2D Ruddlesden–Popper Perovskite Solar Cellscitations
- 2022Solution Processable Direct Bandgap Copper‐Silver‐Bismuth Iodide Photovoltaics: Compositional Control of Dimensionality and Optoelectronic Propertiescitations
- 2022Structural and Photophysical-Properties in Guanidinium-Iodide-Treated Perovskite Solar Cellscitations
- 2022Solution processable direct bandgap copper-silver-bismuth iodide photovoltaics : compositional control of dimensionality and optoelectronic propertiescitations
- 2022Back-Contact Perovskite Solar Cell Fabrication via Microsphere Lithographycitations
- 2021Microfluidic Processing of Ligand-Engineered NiO Nanoparticles for Low-Temperature Hole-Transporting Layers in Perovskite Solar Cellscitations
- 2021Can laminated carbon challenge gold? Towards universal, scalable and low-cost carbon electrodes for perovskite solar cellscitations
- 2020A Solution Processed Antireflective Coating for Back-Contact Perovskite Solar Cellscitations
- 2020The Performance-Determining Role of Lewis Bases in Dye-Sensitized Solar Cells Employing Copper-Bisphenanthroline Redox Mediatorscitations
- 2017Polypyridyl Iron Complex as a Hole-Transporting Material for Formamidinium Lead Bromide Perovskite Solar Cellscitations
- 2017Dipole-field-assisted charge extraction in metal-perovskite-metal back-contact solar cellscitations
- 2017A facile deposition method for CuSCN: Exploring the influence of CuSCN on J-V hysteresis in planar perovskite solar cellscitations
- 2016Enhancing the Optoelectronic Performance of Perovskite Solar Cells via a Textured CH3NH3PbI3 Morphologycitations
- 2016Parameters responsible for the degradation of CH3NH3PbI3-based solar cells on polymer substratescitations
- 2016Enhancing the optoelectronic performance of perovskite solar cells via a textured CH3NH3PbI3 morphologycitations
- 2015Screen-Printing of ZnO Nanostructures from Sol-Gel Solutions for Their Application in Dye-Sensitized Solar Cellscitations
- 2014Gas-assisted preparation of lead iodide perovskite films consisting of a monolayer of single crystalline grains for high efficiency planar solar cellscitations
Places of action
Organizations | Location | People |
---|
article
Solution Processable Direct Bandgap Copper‐Silver‐Bismuth Iodide Photovoltaics: Compositional Control of Dimensionality and Optoelectronic Properties
Abstract
<jats:title>Abstract</jats:title><jats:p>The search for lead‐free alternatives to lead‐halide perovskite photovoltaic materials resulted in the discovery of copper(I)‐silver(I)‐bismuth(III) halides exhibiting promising properties for optoelectronic applications. The present work demonstrates a solution‐based synthesis of uniform Cu<jats:italic><jats:sub>x</jats:sub></jats:italic>AgBiI<jats:sub>4+</jats:sub><jats:italic><jats:sub>x</jats:sub></jats:italic> thin films and scrutinizes the effects of <jats:italic>x</jats:italic> on the phase composition, dimensionality, optoelectronic properties, and photovoltaic performance. Formation of pure 3D CuAgBiI<jats:sub>5</jats:sub> at <jats:italic>x</jats:italic> = 1, 2D Cu<jats:sub>2</jats:sub>AgBiI<jats:sub>6</jats:sub> at <jats:italic>x</jats:italic> = 2, and a mix of the two at 1 < <jats:italic>x</jats:italic> < 2 is demonstrated. Despite lower structural dimensionality, Cu<jats:sub>2</jats:sub>AgBiI<jats:sub>6</jats:sub> has broader optical absorption with a direct bandgap of 1.89 ± 0.05 eV, a valence band level at ‐5.25 eV, improved carrier lifetime, and higher recombination resistance as compared to CuAgBiI<jats:sub>5</jats:sub>. These differences are mirrored in the power conversion efficiencies of the CuAgBiI<jats:sub>5</jats:sub> and Cu<jats:sub>2</jats:sub>AgBiI<jats:sub>6</jats:sub> solar cells under 1 sun of 1.01 ± 0.06% and 2.39 ± 0.05%, respectively. The latter value is the highest reported for this class of materials owing to the favorable film morphology provided by the hot‐casting method. Future performance improvements might emerge from the optimization of the Cu<jats:sub>2</jats:sub>AgBiI<jats:sub>6</jats:sub> layer thickness to match the carrier diffusion length of ≈40–50 nm. Nonencapsulated Cu<jats:sub>2</jats:sub>AgBiI<jats:sub>6</jats:sub> solar cells display storage stability over 240 days.</jats:p>