Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Chatti, Manjunath

  • Google
  • 5
  • 41
  • 236

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (5/5 displayed)

  • 2023High performance acidic water electrooxidation catalysed by manganese–antimony oxides promoted by secondary metals8citations
  • 2022Solution Processable Direct Bandgap Copper‐Silver‐Bismuth Iodide Photovoltaics: Compositional Control of Dimensionality and Optoelectronic Properties35citations
  • 2022Durable electrooxidation of acidic water catalysed by a cobalt-bismuth-based oxide composite: an unexpected role of the F‑doped SnO2 substrate15citations
  • 2022Solution processable direct bandgap copper-silver-bismuth iodide photovoltaics : compositional control of dimensionality and optoelectronic properties35citations
  • 2017Vertically Aligned Interlayer Expanded MoS2 Nanosheets on a Carbon Support for Hydrogen Evolution Electrocatalysis143citations

Places of action

Chart of shared publication
Macfarlane, Douglas
1 / 33 shared
Luke, Sibimol
1 / 1 shared
Yella, Aswani
1 / 4 shared
Simondson, Darcy
1 / 1 shared
Dinh, Khang N.
1 / 1 shared
Kerr, Brittany V.
1 / 1 shared
Nguyen, Tam D.
1 / 1 shared
Yilmaz, Gamze
1 / 1 shared
Chesman, Anthony S. R.
2 / 4 shared
Raga, Sonia R.
1 / 5 shared
Xu, Zhou
2 / 2 shared
Fürer, Sebastian O.
1 / 3 shared
Liracantú, Monica
1 / 1 shared
Reddy, Saripally Sudhaker
2 / 2 shared
Hora, Yvonne
2 / 3 shared
Rai, Nitish
2 / 4 shared
Pai, Narendra
2 / 4 shared
Rietwyk, Kevin J.
2 / 4 shared
Tan, Boer
2 / 3 shared
Scully, Andrew D.
2 / 3 shared
Glück, Nadja
1 / 4 shared
Sepalage, Gaveshana A.
2 / 2 shared
Bach, Udo
2 / 19 shared
Tricoli, Antonio
1 / 16 shared
Nguyen, Cuong K.
1 / 1 shared
Hoogeveen, Dijon A.
1 / 1 shared
Macfarlane, Douglas R.
1 / 1 shared
Cherepanov, Pavel V.
1 / 1 shared
Hocking, Rosalie K.
1 / 4 shared
Johannessen, Bernt
1 / 3 shared
Simonov, Alexandr N.
2 / 5 shared
Tran-Phu, Thanh
1 / 6 shared
Du, Hoang-Long
1 / 1 shared
Kerr, Brittany
1 / 1 shared
Glãck, Nadja
1 / 1 shared
Fãrer, Sebastian O.
1 / 1 shared
Raga, Sonia
1 / 1 shared
Lira-Cantu, Monica
1 / 16 shared
Gengenbach, Thomas R.
1 / 6 shared
King, Russell
1 / 1 shared
Spiccia, Leone
1 / 15 shared
Chart of publication period
2023
2022
2017

Co-Authors (by relevance)

  • Macfarlane, Douglas
  • Luke, Sibimol
  • Yella, Aswani
  • Simondson, Darcy
  • Dinh, Khang N.
  • Kerr, Brittany V.
  • Nguyen, Tam D.
  • Yilmaz, Gamze
  • Chesman, Anthony S. R.
  • Raga, Sonia R.
  • Xu, Zhou
  • Fürer, Sebastian O.
  • Liracantú, Monica
  • Reddy, Saripally Sudhaker
  • Hora, Yvonne
  • Rai, Nitish
  • Pai, Narendra
  • Rietwyk, Kevin J.
  • Tan, Boer
  • Scully, Andrew D.
  • Glück, Nadja
  • Sepalage, Gaveshana A.
  • Bach, Udo
  • Tricoli, Antonio
  • Nguyen, Cuong K.
  • Hoogeveen, Dijon A.
  • Macfarlane, Douglas R.
  • Cherepanov, Pavel V.
  • Hocking, Rosalie K.
  • Johannessen, Bernt
  • Simonov, Alexandr N.
  • Tran-Phu, Thanh
  • Du, Hoang-Long
  • Kerr, Brittany
  • Glãck, Nadja
  • Fãrer, Sebastian O.
  • Raga, Sonia
  • Lira-Cantu, Monica
  • Gengenbach, Thomas R.
  • King, Russell
  • Spiccia, Leone
OrganizationsLocationPeople

article

Solution Processable Direct Bandgap Copper‐Silver‐Bismuth Iodide Photovoltaics: Compositional Control of Dimensionality and Optoelectronic Properties

  • Chesman, Anthony S. R.
  • Raga, Sonia R.
  • Xu, Zhou
  • Fürer, Sebastian O.
  • Liracantú, Monica
  • Reddy, Saripally Sudhaker
  • Hora, Yvonne
  • Chatti, Manjunath
  • Rai, Nitish
  • Pai, Narendra
  • Rietwyk, Kevin J.
  • Tan, Boer
  • Scully, Andrew D.
  • Glück, Nadja
  • Sepalage, Gaveshana A.
  • Bach, Udo
Abstract

<jats:title>Abstract</jats:title><jats:p>The search for lead‐free alternatives to lead‐halide perovskite photovoltaic materials resulted in the discovery of copper(I)‐silver(I)‐bismuth(III) halides exhibiting promising properties for optoelectronic applications. The present work demonstrates a solution‐based synthesis of uniform Cu<jats:italic><jats:sub>x</jats:sub></jats:italic>AgBiI<jats:sub>4+</jats:sub><jats:italic><jats:sub>x</jats:sub></jats:italic> thin films and scrutinizes the effects of <jats:italic>x</jats:italic> on the phase composition, dimensionality, optoelectronic properties, and photovoltaic performance. Formation of pure 3D CuAgBiI<jats:sub>5</jats:sub> at <jats:italic>x</jats:italic> = 1, 2D Cu<jats:sub>2</jats:sub>AgBiI<jats:sub>6</jats:sub> at <jats:italic>x</jats:italic> = 2, and a mix of the two at 1 &lt; <jats:italic>x</jats:italic> &lt; 2 is demonstrated. Despite lower structural dimensionality, Cu<jats:sub>2</jats:sub>AgBiI<jats:sub>6</jats:sub> has broader optical absorption with a direct bandgap of 1.89 ± 0.05 eV, a valence band level at ‐5.25 eV, improved carrier lifetime, and higher recombination resistance as compared to CuAgBiI<jats:sub>5</jats:sub>. These differences are mirrored in the power conversion efficiencies of the CuAgBiI<jats:sub>5</jats:sub> and Cu<jats:sub>2</jats:sub>AgBiI<jats:sub>6</jats:sub> solar cells under 1 sun of 1.01 ± 0.06% and 2.39 ± 0.05%, respectively. The latter value is the highest reported for this class of materials owing to the favorable film morphology provided by the hot‐casting method. Future performance improvements might emerge from the optimization of the Cu<jats:sub>2</jats:sub>AgBiI<jats:sub>6</jats:sub> layer thickness to match the carrier diffusion length of ≈40–50 nm. Nonencapsulated Cu<jats:sub>2</jats:sub>AgBiI<jats:sub>6</jats:sub> solar cells display storage stability over 240 days.</jats:p>

Topics
  • perovskite
  • impedance spectroscopy
  • silver
  • phase
  • thin film
  • copper
  • casting
  • Bismuth