Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Gkeka, Despoina

  • Google
  • 1
  • 12
  • 36

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2022High‐Efficiency Perovskite–Organic Blend Light‐Emitting Diodes Featuring Self‐Assembled Monolayers as Hole‐Injecting Interlayers36citations

Places of action

Chart of shared publication
Gedda, Murali
1 / 5 shared
Nugraha, Mohamad Insan
1 / 6 shared
Deconinck, Marielle
1 / 4 shared
Yengel, Emre
1 / 6 shared
Vaynzof, Yana
1 / 31 shared
Khan, Jafar I.
1 / 3 shared
Anthopoulos, Thomas D.
1 / 33 shared
Bradley, Donal D. C.
1 / 6 shared
Laquai, Frédéric
1 / 11 shared
Lin, Yuanbao
1 / 2 shared
Scaccabarozzi, Alberto D.
1 / 6 shared
Hamilton, Iain
1 / 1 shared
Chart of publication period
2022

Co-Authors (by relevance)

  • Gedda, Murali
  • Nugraha, Mohamad Insan
  • Deconinck, Marielle
  • Yengel, Emre
  • Vaynzof, Yana
  • Khan, Jafar I.
  • Anthopoulos, Thomas D.
  • Bradley, Donal D. C.
  • Laquai, Frédéric
  • Lin, Yuanbao
  • Scaccabarozzi, Alberto D.
  • Hamilton, Iain
OrganizationsLocationPeople

article

High‐Efficiency Perovskite–Organic Blend Light‐Emitting Diodes Featuring Self‐Assembled Monolayers as Hole‐Injecting Interlayers

  • Gedda, Murali
  • Nugraha, Mohamad Insan
  • Deconinck, Marielle
  • Yengel, Emre
  • Vaynzof, Yana
  • Khan, Jafar I.
  • Anthopoulos, Thomas D.
  • Bradley, Donal D. C.
  • Laquai, Frédéric
  • Gkeka, Despoina
  • Lin, Yuanbao
  • Scaccabarozzi, Alberto D.
  • Hamilton, Iain
Abstract

<jats:title>Abstract</jats:title><jats:p>The high photoluminescence efficiency, color purity, extended gamut, and solution processability make low‐dimensional hybrid perovskites attractive for light‐emitting diode (PeLED) applications. However, controlling the microstructure of these materials to improve the device performance remains challenging. Here, the development of highly efficient green PeLEDs based on blends of the quasi‐2D (q2D) perovskite, PEA<jats:sub>2</jats:sub>Cs<jats:sub>4</jats:sub>Pb<jats:sub>5</jats:sub>Br<jats:sub>16</jats:sub>, and the wide bandgap organic semiconductor 2,7 dioctyl[1] benzothieno[3,2‐b]benzothiophene (C<jats:sub>8</jats:sub>‐BTBT) is reported. The presence of C<jats:sub>8</jats:sub>‐BTBT enables the formation of single‐crystal‐like q2D PEA<jats:sub>2</jats:sub>Cs<jats:sub>4</jats:sub>Pb<jats:sub>5</jats:sub>Br<jats:sub>16</jats:sub> domains that are uniform and highly luminescent. Combining the PEA<jats:sub>2</jats:sub>Cs<jats:sub>4</jats:sub>Pb<jats:sub>5</jats:sub>Br<jats:sub>16</jats:sub>:C<jats:sub>8</jats:sub>‐BTBT with self‐assembled monolayers (SAMs) as hole‐injecting layers (HILs), yields green PeLEDs with greatly enhanced performance characteristics, including external quantum efficiency up to 18.6%, current efficiency up to 46.3 cd A<jats:sup>−1</jats:sup>, the luminance of 45 276 cd m<jats:sup>−2</jats:sup>, and improved operational stability compared to neat PeLEDs. The enhanced performance originates from multiple synergistic effects, including enhanced hole‐injection enabled by the SAM HILs, the single crystal‐like quality of the perovskite phase, and the reduced concentration of electronic defects. This work highlights perovskite:organic blends as promising systems for use in LEDs, while the use of SAM HILs creates new opportunities toward simpler and more stable PeLEDs.</jats:p>

Topics
  • perovskite
  • impedance spectroscopy
  • photoluminescence
  • single crystal
  • phase
  • semiconductor
  • defect
  • scanning auger microscopy