Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Müller, Ralph

  • Google
  • 3
  • 27
  • 33

Fraunhofer Institute for Solar Energy Systems

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2023Mask and plate: a scalable front metallization with low-cost potential for III–V-based tandem solar cells enabling 31.6 % conversion efficiency6citations
  • 2022Integrated Solar‐Driven Device with a Front Surface Semitransparent Catalysts for Unassisted CO2 Reduction13citations
  • 2020Tailored disorder: a self-organized photonic contact for light trapping in silicon-based tandem solar cells14citations

Places of action

Chart of shared publication
Clement, Florian
1 / 43 shared
Schube, Jörg
1 / 6 shared
Mikolasch, Gabriele
1 / 4 shared
Steiner, Marc
1 / 4 shared
Predan, Felix
1 / 5 shared
Schygulla, Patrick
1 / 5 shared
Bartsch, Jonas
1 / 30 shared
Dimroth, Frank
2 / 23 shared
Jahn, Mike
1 / 4 shared
Höhn, Oliver
2 / 9 shared
Keding, Roman
1 / 17 shared
Perry, Andrea N.
1 / 2 shared
Cheng, Wenhui
1 / 1 shared
Saive, Rebecca
1 / 3 shared
Yalamanchili, Sisir
1 / 2 shared
Kelzenberg, Michael
1 / 2 shared
Hannappel, Thomas
1 / 11 shared
Brunschwig, Bruce S.
1 / 6 shared
Richter, Matthias H.
1 / 2 shared
Jahelka, Phillip R.
1 / 2 shared
Wu, Pin Chieh
1 / 2 shared
Bläsi, Benedikt
1 / 7 shared
Hauser, Hubert
1 / 5 shared
Glunz, Stefan W.
1 / 55 shared
Mühlbach, Kai
1 / 1 shared
Seitz, Sonja
1 / 1 shared
Rühe, Jürgen
1 / 15 shared
Chart of publication period
2023
2022
2020

Co-Authors (by relevance)

  • Clement, Florian
  • Schube, Jörg
  • Mikolasch, Gabriele
  • Steiner, Marc
  • Predan, Felix
  • Schygulla, Patrick
  • Bartsch, Jonas
  • Dimroth, Frank
  • Jahn, Mike
  • Höhn, Oliver
  • Keding, Roman
  • Perry, Andrea N.
  • Cheng, Wenhui
  • Saive, Rebecca
  • Yalamanchili, Sisir
  • Kelzenberg, Michael
  • Hannappel, Thomas
  • Brunschwig, Bruce S.
  • Richter, Matthias H.
  • Jahelka, Phillip R.
  • Wu, Pin Chieh
  • Bläsi, Benedikt
  • Hauser, Hubert
  • Glunz, Stefan W.
  • Mühlbach, Kai
  • Seitz, Sonja
  • Rühe, Jürgen
OrganizationsLocationPeople

article

Integrated Solar‐Driven Device with a Front Surface Semitransparent Catalysts for Unassisted CO2 Reduction

  • Perry, Andrea N.
  • Cheng, Wenhui
  • Saive, Rebecca
  • Yalamanchili, Sisir
  • Kelzenberg, Michael
  • Müller, Ralph
  • Dimroth, Frank
  • Hannappel, Thomas
  • Brunschwig, Bruce S.
  • Richter, Matthias H.
  • Jahelka, Phillip R.
  • Wu, Pin Chieh
Abstract

<jats:title>Abstract</jats:title><jats:p>Monolithic integrated photovoltaic‐driven electrochemical (PV‐EC) artificial photosynthesis is reported for unassisted CO<jats:sub>2</jats:sub> reduction. The PV‐EC structures employ triple junction photoelectrodes with a front mounted semitransparent catalyst layer as a photocathode. The catalyst layer is comprised of an array of microscale triangular metallic prisms that redirect incoming light toward open areas of the photoelectrode to reduce shadow losses. Full wave electromagnetic simulations of the prism array (PA) structure guide optimization of geometries and length scales. An integrated device is constructed with Ag catalyst prisms covering 35% of the surface area. The experimental device has close to 80% of the transmittance with a catalytic surface area equivalent 144% of the glass substrate area. Experimentally this photocathode demonstrates a direct solar‐to‐CO conversion efficiency of 5.9% with 50 h stability. Selective electrodeposition of Cu catalysts onto the surface of the Ag triangular prisms allows CO<jats:sub>2</jats:sub> conversion to higher value products enabling demonstration of a solar‐to‐C<jats:sub>2+</jats:sub> product efficiency of 3.1%. This design featuring structures that have a semitransparent catalyst layer on a PV‐EC cell is a general solution to light loss by shadowing for front surface mounted metal catalysts, and opens a route for the development of artificial photosynthesis based on this scalable design approach.</jats:p>

Topics
  • impedance spectroscopy
  • surface
  • simulation
  • glass
  • glass
  • electrodeposition