People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Löffler, Tobias
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (16/16 displayed)
- 2024Self-formation of compositionally complex surface oxides on high entropy alloys: a route to sustainable catalysts
- 2022Zooming‐in - visualization of active site heterogeneity in high entropy alloy electrocatalysts using scanning electrochemical cell microscopycitations
- 2022Unravelling composition-activity-stability trends in high entropy alloy electrocatalysts by using a data‐guided combinatorial synthesis strategy and computational modelingcitations
- 2021What makes high‐entropy alloys exceptional electrocatalysts?citations
- 2021Bayesian optimization of high‐entropy alloy compositions for electrocatalytic oxygen reductioncitations
- 2021Comparing the activity of complex solid solution electrocatalysts using inflection points of voltammetric activity curves as activity descriptorscitations
- 2021Was macht Hochentropie‐Legierungen zu außergewöhnlichen Elektrokatalysateuren?citations
- 2020Complex‐solid‐solution electrocatalyst discovery by computational prediction and high‐throughput experimentationcitations
- 2020Sputter deposition of highly active complex solid solution electrocatalysts into an ionic liquid librarycitations
- 2020Design of complex solid solution electrocatalysts by correlating configuration, adsorption energy distribution patterns and activity curvescitations
- 2020Design von komplexen Mischkristall‐Elektrokatalysatoren auf Basis der Korrelation von Konfiguration, Verteilungsmustern der Adsorptionsenergie und Aktivitätskurvencitations
- 2019Toward a paradigm shift in electrocatalysis using complex solid solution nanoparticlescitations
- 2018Discovery of a multinary noble metal-free oxygen reduction catalystcitations
- 2018Controlling the Amorphous and Crystalline State of Multinary Alloy Nanoparticles in An Ionic Liquidcitations
- 2016Fourfold action of surfactants with superacid head groups: polyoxometalate–silicone nanocomposites as promising candidates for proton-conducting materialscitations
- 2016Fourfold action of surfactants with superacid head groups : polyoxometalate-silicone nanocomposites as promising candidates for proton-conducting materialscitations
Places of action
Organizations | Location | People |
---|
article
Unravelling composition-activity-stability trends in high entropy alloy electrocatalysts by using a data‐guided combinatorial synthesis strategy and computational modeling
Abstract
High entropy alloys (HEA) comprise a huge search space for new electrocatalysts. Next to element combinations, the optimization of the chemical composition is essential for tuning HEA to specific catalytic processes. Simulations of electrocatalytic activity can guide experimental efforts. Yet, the currently available underlying model assumptions do not necessarily align with experimental evidence. To study deviations of theoretical models and experimental data requires statistically relevant datasets. Here, a combinatorial strategy for acquiring large experimental datasets of multi-dimensional composition spaces is presented. Ru–Rh–Pd–Ir–Pt is studied as an exemplary, highly relevant HEA system. Systematic comparison with computed electrochemical activity enables the study of deviations from theoretical model assumptions for compositionally complex solid solutions in the experiment. The results suggest that the experimentally obtained distribution of surface atoms deviates from the ideal distribution of atoms in the model. Leveraging both advanced simulation and large experimental data enables the estimation of electrocatalytic activity and solid-solution stability trends in the 5D composition space of the HEA system. A perspective on future directions for the development of active and stable HEA catalysts is outlined.