Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Zhao, Jiashang

  • Google
  • 6
  • 60
  • 173

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (6/6 displayed)

  • 2024Alleviating nanostructural phase impurities enhances the optoelectronic properties, device performance and stability of cesium-formamidinium metal–halide perovskites15citations
  • 2023Crystallization Process for High-Quality Cs0.15FA0.85PbI2.85Br0.15Film Deposited via Simplified Sequential Vacuum Evaporation10citations
  • 2022Traps in the spotlight16citations
  • 2022Traps in the spotlight: How traps affect the charge carrier dynamics in Cs2AgBiBr6 perovskitecitations
  • 2022Predicting Solar Cell Performance from Terahertz and Microwave Spectroscopy66citations
  • 2022Predicting solar cell performance from terahertz and microwave spectroscopy66citations

Places of action

Chart of shared publication
Wolff, Christian Michael
1 / 15 shared
Othman, Mostafa
1 / 5 shared
Wirtz, Tom
1 / 10 shared
Chernyshov, Dmitry
1 / 23 shared
Tabean, Saba
1 / 2 shared
Hessler-Wyser, Aïcha
1 / 14 shared
Futscher, Moritz H.
1 / 15 shared
Jacobs, Daniel A.
1 / 5 shared
Züfle, Simon
1 / 3 shared
Ballif, Christophe
1 / 23 shared
Kuba, Austin G.
1 / 3 shared
Zeiske, Stefan
1 / 8 shared
Jenatsch, Sandra
1 / 7 shared
Savenije, Tom J.
4 / 36 shared
Ruhstaller, Beat
1 / 12 shared
Eswara, Santhana
1 / 4 shared
Jaffrès, Anaël
1 / 1 shared
Jeangros, Quentin
1 / 16 shared
Armin, Ardalan
1 / 9 shared
Kerklaan, Mels
1 / 2 shared
Ibrahim, Bahiya
1 / 1 shared
Mazzarella, Luana
1 / 9 shared
Bannenberg, Lars
1 / 12 shared
Wang, Haoxu
1 / 1 shared
Isabella, Olindo
1 / 18 shared
Yan, Jin
1 / 2 shared
Thieme, Jos
2 / 5 shared
Phadke, Sohan A.
2 / 2 shared
Hutter, Eline M.
2 / 33 shared
Caselli, Valentina M.
2 / 12 shared
Jöbsis, Huygen J.
2 / 7 shared
Chart of publication period
2024
2023
2022

Co-Authors (by relevance)

  • Wolff, Christian Michael
  • Othman, Mostafa
  • Wirtz, Tom
  • Chernyshov, Dmitry
  • Tabean, Saba
  • Hessler-Wyser, Aïcha
  • Futscher, Moritz H.
  • Jacobs, Daniel A.
  • Züfle, Simon
  • Ballif, Christophe
  • Kuba, Austin G.
  • Zeiske, Stefan
  • Jenatsch, Sandra
  • Savenije, Tom J.
  • Ruhstaller, Beat
  • Eswara, Santhana
  • Jaffrès, Anaël
  • Jeangros, Quentin
  • Armin, Ardalan
  • Kerklaan, Mels
  • Ibrahim, Bahiya
  • Mazzarella, Luana
  • Bannenberg, Lars
  • Wang, Haoxu
  • Isabella, Olindo
  • Yan, Jin
  • Thieme, Jos
  • Phadke, Sohan A.
  • Hutter, Eline M.
  • Caselli, Valentina M.
  • Jöbsis, Huygen J.
OrganizationsLocationPeople

article

Predicting Solar Cell Performance from Terahertz and Microwave Spectroscopy

  • Dörflinger, Patrick
  • Taheri, Mohammad M.
  • Schwarzburg, Klaus
  • Paingad, Vaisakh C.
  • Neu, Jens
  • Lloydhughes, James
  • Hong, Min Ji
  • Heilweil, Edwin J.
  • Dyakonov, Vladimir
  • Unold, Thomas
  • Hempel, Hannes
  • Failla, Michele
  • Savenjie, Tom J.
  • Siebbeles, Laurens D. A.
  • Schleuning, Markus
  • Magnanelli, Timothy J.
  • Stolterfoht, Martin
  • Kužel, Petr
  • Friedrich, Dennis
  • Monti, Maurizio
  • Cardon, Joseph M.
  • Katoh, Ryuzi
  • Ardo, Shane
  • Butlercaddle, Edward
  • Labram, John G.
  • Spies, Jacob A.
  • Baxter, Jason B.
  • Zhao, Jiashang
  • Luo, Simon
Abstract

<jats:title>Abstract</jats:title><jats:p>Mobilities and lifetimes of photogenerated charge carriers are core properties of photovoltaic materials and can both be characterized by contactless terahertz or microwave measurements. Here, the expertise from fifteen laboratories is combined to quantitatively model the current‐voltage characteristics of a solar cell from such measurements. To this end, the impact of measurement conditions, alternate interpretations, and experimental inter‐laboratory variations are discussed using a (Cs,FA,MA)Pb(I,Br)<jats:sub>3</jats:sub> halide perovskite thin‐film as a case study. At 1 sun equivalent excitation, neither transport nor recombination is significantly affected by exciton formation or trapping. Terahertz, microwave, and photoluminescence transients for the neat material yield consistent effective lifetimes implying a resistance‐free JV‐curve with a potential power conversion efficiency of 24.6 %. For grainsizes above ≈20 nm, intra‐grain charge transport is characterized by terahertz sum mobilities of ≈32 cm<jats:sup>2</jats:sup> V<jats:sup>−1</jats:sup> s<jats:sup>−1</jats:sup>. Drift‐diffusion simulations indicate that these intra‐grain mobilities can slightly reduce the fill factor of perovskite solar cells to 0.82, in accordance with the best‐realized devices in the literature. Beyond perovskites, this work can guide a highly predictive characterization of any emerging semiconductor for photovoltaic or photoelectrochemical energy conversion. A best practice for the interpretation of terahertz and microwave measurements on photovoltaic materials is presented.</jats:p>

Topics
  • perovskite
  • impedance spectroscopy
  • photoluminescence
  • grain
  • simulation
  • semiconductor
  • power conversion efficiency