Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Kužel, Petr

  • Google
  • 4
  • 45
  • 237

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (4/4 displayed)

  • 2022Predicting Solar Cell Performance from Terahertz and Microwave Spectroscopy66citations
  • 2022Predicting Solar Cell Performance from Terahertz and Microwave Spectroscopy66citations
  • 2022Predicting solar cell performance from terahertz and microwave spectroscopy66citations
  • 2013Effect of stoichiometry on the dielectric properties and soft mode behavior of strained epitaxial SrTiO<sub>3</sub> thin films on DyScO<sub>3</sub> substrates39citations

Places of action

Chart of shared publication
Neu, Jens
3 / 3 shared
Failla, M.
1 / 2 shared
Stolterfoht, Martin
3 / 29 shared
Paingad, Vaisakh C.
3 / 3 shared
Savenije, T. J.
1 / 12 shared
Hempel, Hannes
3 / 11 shared
Siebbeles, L. D. A.
1 / 10 shared
Zhao, J.
1 / 34 shared
Bernhagen, Margitta
1 / 1 shared
Haislmaier, Ryan
1 / 1 shared
Skoromets, Volodymyr
1 / 1 shared
Xi, Xiaoxing
1 / 7 shared
Schlom, Darrell G.
1 / 10 shared
Lee, Che-Hui
1 / 1 shared
Uecker, Reinhard
1 / 8 shared
Lei, Shiming
1 / 5 shared
Gopalan, Venkatraman
1 / 20 shared
Kamba, Stanislav
1 / 3 shared
Biegalski, Michael D.
1 / 4 shared
Martí, Xavier
1 / 1 shared
Chart of publication period
2022
2013

Co-Authors (by relevance)

  • Neu, Jens
  • Failla, M.
  • Stolterfoht, Martin
  • Paingad, Vaisakh C.
  • Savenije, T. J.
  • Hempel, Hannes
  • Siebbeles, L. D. A.
  • Zhao, J.
  • Bernhagen, Margitta
  • Haislmaier, Ryan
  • Skoromets, Volodymyr
  • Xi, Xiaoxing
  • Schlom, Darrell G.
  • Lee, Che-Hui
  • Uecker, Reinhard
  • Lei, Shiming
  • Gopalan, Venkatraman
  • Kamba, Stanislav
  • Biegalski, Michael D.
  • Martí, Xavier
OrganizationsLocationPeople

article

Predicting Solar Cell Performance from Terahertz and Microwave Spectroscopy

  • Dörflinger, Patrick
  • Taheri, Mohammad M.
  • Schwarzburg, Klaus
  • Paingad, Vaisakh C.
  • Neu, Jens
  • Lloydhughes, James
  • Hong, Min Ji
  • Heilweil, Edwin J.
  • Dyakonov, Vladimir
  • Unold, Thomas
  • Hempel, Hannes
  • Failla, Michele
  • Savenjie, Tom J.
  • Siebbeles, Laurens D. A.
  • Schleuning, Markus
  • Magnanelli, Timothy J.
  • Stolterfoht, Martin
  • Kužel, Petr
  • Friedrich, Dennis
  • Monti, Maurizio
  • Cardon, Joseph M.
  • Katoh, Ryuzi
  • Ardo, Shane
  • Butlercaddle, Edward
  • Labram, John G.
  • Spies, Jacob A.
  • Baxter, Jason B.
  • Zhao, Jiashang
  • Luo, Simon
Abstract

<jats:title>Abstract</jats:title><jats:p>Mobilities and lifetimes of photogenerated charge carriers are core properties of photovoltaic materials and can both be characterized by contactless terahertz or microwave measurements. Here, the expertise from fifteen laboratories is combined to quantitatively model the current‐voltage characteristics of a solar cell from such measurements. To this end, the impact of measurement conditions, alternate interpretations, and experimental inter‐laboratory variations are discussed using a (Cs,FA,MA)Pb(I,Br)<jats:sub>3</jats:sub> halide perovskite thin‐film as a case study. At 1 sun equivalent excitation, neither transport nor recombination is significantly affected by exciton formation or trapping. Terahertz, microwave, and photoluminescence transients for the neat material yield consistent effective lifetimes implying a resistance‐free JV‐curve with a potential power conversion efficiency of 24.6 %. For grainsizes above ≈20 nm, intra‐grain charge transport is characterized by terahertz sum mobilities of ≈32 cm<jats:sup>2</jats:sup> V<jats:sup>−1</jats:sup> s<jats:sup>−1</jats:sup>. Drift‐diffusion simulations indicate that these intra‐grain mobilities can slightly reduce the fill factor of perovskite solar cells to 0.82, in accordance with the best‐realized devices in the literature. Beyond perovskites, this work can guide a highly predictive characterization of any emerging semiconductor for photovoltaic or photoelectrochemical energy conversion. A best practice for the interpretation of terahertz and microwave measurements on photovoltaic materials is presented.</jats:p>

Topics
  • perovskite
  • impedance spectroscopy
  • photoluminescence
  • grain
  • simulation
  • semiconductor
  • power conversion efficiency