People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Zhang, Doudou
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (5/5 displayed)
- 2022Direct solar to hydrogen conversion enabled by silicon photocathodes with carrier selective passivated contactscitations
- 2021Ultrathin HfO2passivated silicon photocathodes for efficient alkaline water splittingcitations
- 2021Direct Solar Hydrogen Generation at 20% Efficiency Using Low-Cost Materialscitations
- 2021Earth-Abundant Amorphous Electrocatalysts for Electrochemical Hydrogen Productioncitations
- 2020Over 17% Efficiency Stand-Alone Solar Water Splitting Enabled by Perovskite-Silicon Tandem Absorberscitations
Places of action
Organizations | Location | People |
---|
article
Direct Solar Hydrogen Generation at 20% Efficiency Using Low-Cost Materials
Abstract
<p>While direct solar-driven water splitting has been investigated as an important technology for low-cost hydrogen production, the systems demonstrated so far either required expensive materials or presented low solar-to-hydrogen (STH) conversion efficiencies, both of which increase the levelized cost of hydrogen (LCOH). Here, a low-cost material system is demonstrated, consisting of perovskite/Si tandem semiconductors and Ni-based earth-abundant catalysts for direct solar hydrogen generation. NiMo-based hydrogen evolution reaction catalyst is reported, which has innovative “flower-stem” morphology with enhanced reaction sites and presents very low reaction overpotential of 6 mV at 10 mA cm<sup>−2</sup>. A perovskite solar cell with an unprecedented high open circuit voltage (V<sub>oc</sub>) of 1.271 V is developed, which is enabled by an optimized perovskite composition and an improved surface passivation. When the NiMo hydrogen evolution catalyst is wire-connected with an optimally designed NiFe-based oxygen evolution catalyst and a high-performance perovskite-Si tandem cell, the resulting integrated water splitting cell achieves a record 20% STH efficiency. Detailed analysis of the integrated system reveals that STH efficiencies of 25% can be achieved with realistic improvements in the perovskite cell and an LCOH below ≈$3 kg<sup>−1</sup> is feasible.</p>