Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Dörling, Bernhard

  • Google
  • 5
  • 39
  • 56

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (5/5 displayed)

  • 2024Tailoring the Electron-Deficient Central Core on Fused-Ring Nonfullerene Acceptors: Deciphering the Relationships Between Structure, Property, and Photovoltaic Performance4citations
  • 2024On The Thermal Conductivity of Conjugated Polymers for Thermoelectrics6citations
  • 2021Study of nanostructured ultra-refractory Tantalum-Hafnium-Carbide electrodes with wide electrochemical stability window6citations
  • 2021Study of nanostructured ultra-refractory Tantalum-Hafnium-Carbide electrodes with wide electrochemical stability window6citations
  • 2019Solar Harvesting: a Unique Opportunity for Organic Thermoelectrics?34citations

Places of action

Chart of shared publication
Campoy Quiles, Mariano
1 / 13 shared
Harillo Baños, Albert
1 / 1 shared
Venuti, Elisabetta
1 / 6 shared
Ramos, María Mar
1 / 1 shared
Martínez, José Ignacio
1 / 5 shared
Suárez Blas, Fátima
1 / 1 shared
Alonso Navarro, Matías J.
1 / 1 shared
Segura, José L.
1 / 4 shared
Funes, Alejandro
1 / 1 shared
Riera Galindo, Sergi
1 / 3 shared
Pandolfi, Lorenzo
1 / 2 shared
Saiz, Fernan
1 / 2 shared
Guo, Jiali
1 / 5 shared
Rurali, Riccardo
1 / 12 shared
Campoyquiles, Mariano
1 / 2 shared
Martin, Jaime
1 / 13 shared
Marina, Sara
1 / 7 shared
Xu, Kai
1 / 14 shared
Rodríguezmartínez, Xabier
1 / 1 shared
Mcculloch, Iain
1 / 44 shared
Reparaz, Juan Sebastian
1 / 7 shared
Graczykowski, B.
1 / 5 shared
Kim, Yeonho
2 / 3 shared
Coy, Emerson
1 / 23 shared
Babacic, Visnja
1 / 5 shared
Iatsunskyi, Igor
2 / 59 shared
Siuzdak, Katarzyna
2 / 13 shared
Załęski, Karol
2 / 41 shared
Yate, Luis
2 / 17 shared
Reparaz, J. Sebastian
1 / 5 shared
Emerson Coy, Phd, Dsc.
1 / 38 shared
Babačić, Višnja
1 / 2 shared
Graczykowski, Bartlomiej
1 / 12 shared
Reparaz, Juan Sebastián
1 / 5 shared
Zapataarteaga, Osnat
1 / 1 shared
Mihi, Agustín
1 / 9 shared
Campoy-Quiles, Mariano
1 / 20 shared
Roig, Anna
1 / 5 shared
Jurado, José
1 / 1 shared
Chart of publication period
2024
2021
2019

Co-Authors (by relevance)

  • Campoy Quiles, Mariano
  • Harillo Baños, Albert
  • Venuti, Elisabetta
  • Ramos, María Mar
  • Martínez, José Ignacio
  • Suárez Blas, Fátima
  • Alonso Navarro, Matías J.
  • Segura, José L.
  • Funes, Alejandro
  • Riera Galindo, Sergi
  • Pandolfi, Lorenzo
  • Saiz, Fernan
  • Guo, Jiali
  • Rurali, Riccardo
  • Campoyquiles, Mariano
  • Martin, Jaime
  • Marina, Sara
  • Xu, Kai
  • Rodríguezmartínez, Xabier
  • Mcculloch, Iain
  • Reparaz, Juan Sebastian
  • Graczykowski, B.
  • Kim, Yeonho
  • Coy, Emerson
  • Babacic, Visnja
  • Iatsunskyi, Igor
  • Siuzdak, Katarzyna
  • Załęski, Karol
  • Yate, Luis
  • Reparaz, J. Sebastian
  • Emerson Coy, Phd, Dsc.
  • Babačić, Višnja
  • Graczykowski, Bartlomiej
  • Reparaz, Juan Sebastián
  • Zapataarteaga, Osnat
  • Mihi, Agustín
  • Campoy-Quiles, Mariano
  • Roig, Anna
  • Jurado, José
OrganizationsLocationPeople

article

Solar Harvesting: a Unique Opportunity for Organic Thermoelectrics?

  • Zapataarteaga, Osnat
  • Mihi, Agustín
  • Campoy-Quiles, Mariano
  • Roig, Anna
  • Jurado, José
  • Dörling, Bernhard
Abstract

<jats:title>Abstract</jats:title><jats:p>Thermoelectrics have emerged as a strategy for solar‐to‐electricity conversion, as they can complement photovoltaic devices as IR harvesters or operate as stand‐alone systems often under strong light and heat concentration. Inspired by the recent success of inorganic‐based solar thermoelectric generators (STEGs), in this manuscript, the potential of benchmark organic thermoelectric materials for solar harvesting is evaluated. It is shown that the inherent properties of organic semiconductors allow the possibility of fabricating organic STEGs (SOTEGs) of extraordinary simplicity. The broadband light absorption exhibited by most organic thermoelectrics combined with their low thermal conductivities results in a significant temperature rise upon illumination as seen by IR thermography. Under 2 sun illumination, a temperature difference of 50 K establishes between the illuminated and the non‐illuminated sides of a poly(3,4‐ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) film, and ≈40 K for a carbon nanotube/cellulose composite. Moreover, when using light as a heat source, the Seebeck coefficient remains unaffected, while a small photoconductivity effect is observed in PEDOT:PSS and carbon nanotubes. Then, the effect of several geometrical factors on the power output of a solar organic thermoelectric generator is investigated, enabling us to propose simple SOTEG geometries that capitalize on the planar geometry typical of solution‐processable materials. Finally, a proof‐of‐concept SOTEG is demonstrated, generating 180 nW under 2 suns.</jats:p>

Topics
  • impedance spectroscopy
  • Carbon
  • nanotube
  • semiconductor
  • composite
  • cellulose
  • thermography
  • photoconductivity