Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Carrasco, Javier

  • Google
  • 5
  • 19
  • 166

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (5/5 displayed)

  • 2021Towards tuning the modality of hierarchical macro-nanoporous metals by controlling the dealloying kinetics of close-to-eutectic alloys2citations
  • 2019Fluorine‐Free Noble Salt Anion for High‐Performance All‐Solid‐State Lithium–Sulfur Batteries82citations
  • 2016Variation in surface energy and reduction drive of a metal oxide lithium-ion anode with stoichiometry30citations
  • 2016Unveiling the electrochemical mechanisms of the Li 2 Fe(SO 4 ) 2 polymorphs by neutron diffraction and density functional theory calculations22citations
  • 2016Variation in surface energy and reduction drive of a metal oxide lithium-ion anode with stoichiometry:a DFT study of lithium titanate spinel surfaces30citations

Places of action

Chart of shared publication
Santiago, Alexander
1 / 1 shared
Armand, Michel
1 / 15 shared
Li, Chunmei
1 / 2 shared
Martinezibañez, Maria
1 / 1 shared
Muñozmárquez, Miguel Ángel
1 / 1 shared
Judez, Xabier
1 / 1 shared
Zhang, Heng
1 / 15 shared
Eshetu, Gebrekidan Gebresilassie
1 / 1 shared
Teobaldi, Gilberto
2 / 7 shared
Morgan, Benjamin
1 / 6 shared
Tarascon, Jeanmarie
1 / 26 shared
Bellin, Christophe
1 / 2 shared
Lander, Laura
1 / 2 shared
Polian, Alain
1 / 10 shared
Reynaud, Marine
1 / 7 shared
Rousse, Gwenaëlle
1 / 13 shared
Baptiste, Benoît
1 / 8 shared
Katcho, Nebil A.
1 / 2 shared
Morgan, Benjamin J.
1 / 5 shared
Chart of publication period
2021
2019
2016

Co-Authors (by relevance)

  • Santiago, Alexander
  • Armand, Michel
  • Li, Chunmei
  • Martinezibañez, Maria
  • Muñozmárquez, Miguel Ángel
  • Judez, Xabier
  • Zhang, Heng
  • Eshetu, Gebrekidan Gebresilassie
  • Teobaldi, Gilberto
  • Morgan, Benjamin
  • Tarascon, Jeanmarie
  • Bellin, Christophe
  • Lander, Laura
  • Polian, Alain
  • Reynaud, Marine
  • Rousse, Gwenaëlle
  • Baptiste, Benoît
  • Katcho, Nebil A.
  • Morgan, Benjamin J.
OrganizationsLocationPeople

article

Fluorine‐Free Noble Salt Anion for High‐Performance All‐Solid‐State Lithium–Sulfur Batteries

  • Santiago, Alexander
  • Armand, Michel
  • Li, Chunmei
  • Martinezibañez, Maria
  • Muñozmárquez, Miguel Ángel
  • Judez, Xabier
  • Zhang, Heng
  • Carrasco, Javier
  • Eshetu, Gebrekidan Gebresilassie
Abstract

<jats:title>Abstract</jats:title><jats:p>Amongst post‐Li‐ion battery technologies, lithium–sulfur (Li–S) batteries have captured an immense interest as one of the most appealing devices from both the industrial and academia sectors. The replacement of conventional liquid electrolytes with solid polymer electrolytes (SPEs) enables not only a safer use of Li metal (Li°) anodes but also a flexible design in the shape of Li–S batteries. However, the practical implementation of SPEs‐based all‐solid‐state Li–S batteries (ASSLSBs) is largely hindered by the shuttling effect of the polysulfide intermediates and the formation of dendritic Li° during the battery operation. Herein, a fluorine‐free noble salt anion, tricyanomethanide [C(CN)<jats:sub>3</jats:sub><jats:sup>−</jats:sup>, TCM<jats:sup>−</jats:sup>], is proposed as a Li‐ion conducting salt for ASSLSBs. Compared to the widely used perfluorinated anions {e.g., bis(trifluoromethanesulfonyl)imide anion, [N(SO<jats:sub>2</jats:sub>CF<jats:sub>3</jats:sub>)<jats:sub>2</jats:sub>)]<jats:sup>−</jats:sup>, TFSI<jats:sup>−</jats:sup>}, the LiTCM‐based electrolytes show decent ionic conductivity, good thermal stability, and sufficient anodic stability suiting the cell chemistry of ASSLSBs. In particular, the fluorine‐free solid electrolyte interphase layer originating from the decomposition of LiTCM exhibits a good mechanical integrity and Li‐ion conductivity, which allows the LiTCM‐based Li–S cells to be cycled with good rate capability and Coulombic efficiency. The LiTCM‐based electrolytes are believed to be the most promising candidates for building cost‐effective and high energy density ASSLSBs in the near future.</jats:p>

Topics
  • density
  • impedance spectroscopy
  • polymer
  • energy density
  • Lithium
  • decomposition