Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Corre, Vincent M. Le

  • Google
  • 4
  • 35
  • 118

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (4/4 displayed)

  • 2024In Situ Probing the Crystallization Kinetics in Gas‐Quenching‐Assisted Coating of Perovskite Films15citations
  • 2024On the importance of varying device thickness and temperature on the outcome of space-charge-limited current measurements3citations
  • 2021Pathways toward 30% Efficient Single‐Junction Perovskite Solar Cells and the Role of Mobile Ions71citations
  • 2018Bilayer–ternary polymer solar cells fabricated using spontaneous spreading on water29citations

Places of action

Chart of shared publication
Lüer, Larry
1 / 7 shared
Brabec, Christoph J.
1 / 36 shared
Ronsin, Olivier J. J.
1 / 3 shared
Qiu, Shudi
1 / 1 shared
Zhang, Kaicheng
1 / 6 shared
Dong, Lirong
1 / 1 shared
Majewski, Martin
1 / 1 shared
Jang, Dongju
1 / 1 shared
Cerrillo, José Garcia
1 / 1 shared
Du, Tian
1 / 2 shared
Guo, Fei
1 / 3 shared
Harting, Jens
1 / 5 shared
Yang, Fu
1 / 2 shared
Egelhaaf, Hansjoachim
1 / 1 shared
Zhao, Alfred
1 / 1 shared
Röhr, Jason A.
1 / 2 shared
Diekmann, Jonas
1 / 6 shared
Neher, Dieter
1 / 64 shared
Deibel, Carsten
1 / 4 shared
Kirchartz, Thomas
1 / 20 shared
Ehrler, Bruno
1 / 22 shared
Peña-Camargo, Francisco
1 / 9 shared
Gutierrez-Partida, Emilio
1 / 12 shared
Futscher, Moritz H.
1 / 15 shared
Jaiser, Frank
1 / 7 shared
Toro, Lorena Perdigón
1 / 1 shared
Reichert, Sebastian
1 / 2 shared
Unold, Thomas
1 / 42 shared
Caprioglio, Pietro
1 / 17 shared
Arvind, Malavika
1 / 4 shared
Wienk, Martijn M.
1 / 41 shared
Heuvel, Ruurd
1 / 4 shared
Janssen, René A. J.
1 / 151 shared
Colberts, Fallon J. M.
1 / 4 shared
Koster, L. Jan Anton
1 / 23 shared
Chart of publication period
2024
2021
2018

Co-Authors (by relevance)

  • Lüer, Larry
  • Brabec, Christoph J.
  • Ronsin, Olivier J. J.
  • Qiu, Shudi
  • Zhang, Kaicheng
  • Dong, Lirong
  • Majewski, Martin
  • Jang, Dongju
  • Cerrillo, José Garcia
  • Du, Tian
  • Guo, Fei
  • Harting, Jens
  • Yang, Fu
  • Egelhaaf, Hansjoachim
  • Zhao, Alfred
  • Röhr, Jason A.
  • Diekmann, Jonas
  • Neher, Dieter
  • Deibel, Carsten
  • Kirchartz, Thomas
  • Ehrler, Bruno
  • Peña-Camargo, Francisco
  • Gutierrez-Partida, Emilio
  • Futscher, Moritz H.
  • Jaiser, Frank
  • Toro, Lorena Perdigón
  • Reichert, Sebastian
  • Unold, Thomas
  • Caprioglio, Pietro
  • Arvind, Malavika
  • Wienk, Martijn M.
  • Heuvel, Ruurd
  • Janssen, René A. J.
  • Colberts, Fallon J. M.
  • Koster, L. Jan Anton
OrganizationsLocationPeople

article

Bilayer–ternary polymer solar cells fabricated using spontaneous spreading on water

  • Wienk, Martijn M.
  • Corre, Vincent M. Le
  • Heuvel, Ruurd
  • Janssen, René A. J.
  • Colberts, Fallon J. M.
  • Koster, L. Jan Anton
Abstract

<p>A new method is presented to fabricate bilayer organic solar cells via sequential deposition of bulk-heterojunction layers obtained using spontaneous spreading of polymer–fullerene blends on a water surface. Using two layers of a small bandgap diketopyrrolopyrrole polymer–fullerene blend, a small improvement in power conversion efficiency (PCE) from 4.9% to 5.1% is obtained compared to spin-coated devices of similar thickness. Next, bilayer–ternary cells are fabricated by first spin coating a wide bandgap thiophene polymer–fullerene blend, followed by depositing a small bandgap diketopyrrolopyrrole polymer–fullerene layer by transfer from a water surface. These novel bilayer–ternary devices feature a PCE of 5.9%, higher than that of the individual layers. Remarkable, external quantum efficiencies (EQEs) over 100% are measured for the wide bandgap layer under near-infrared bias light illumination. Drift-diffusion calculations confirm that near-infrared bias illumination can result in a significant increase in EQE as a result of a change in the internal electric field in the device, but cannot yet account for the magnitude of the effect. The experimental results indicate that the high EQEs over 100% under bias illumination are related to a barrier for electron transport over the interface between the two blends.</p>

Topics
  • Deposition
  • impedance spectroscopy
  • surface
  • polymer
  • power conversion efficiency
  • spin coating