People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Hempel, Hannes
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (11/11 displayed)
- 2023Internal electric fields control triplet formation in halide perovskite-sensitized photon upconverters
- 2022Monolithic perovskite/silicon tandem solar cell with >29% efficiency by enhanced hole extraction
- 2022Revealing the doping density in perovskite solar cells and its impact on device performancecitations
- 2022Understanding performance limiting interfacial recombination in pin Perovskite solar cellscitations
- 2022Predicting Solar Cell Performance from Terahertz and Microwave Spectroscopycitations
- 2022Predicting Solar Cell Performance from Terahertz and Microwave Spectroscopycitations
- 2022Predicting solar cell performance from terahertz and microwave spectroscopycitations
- 2020Monitoring Charge Carrier Diffusion across a Perovskite Film with Transient Absorption Spectroscopycitations
- 2020Grain Boundaries Limit the Charge Carrier Transport in Pulsed Laser Deposited α-SnWO4 Thin Film Photoabsorberscitations
- 2019Low Temperature Synthesis of Stable γ-CsPbI 3 Perovskite Layers for Solar Cells Obtained by High Throughput Experimentationcitations
- 2017Enhancing Charge Carrier Lifetime in Metal Oxide Photoelectrodes through Mild Hydrogen Treatmentcitations
Places of action
Organizations | Location | People |
---|
article
Enhancing Charge Carrier Lifetime in Metal Oxide Photoelectrodes through Mild Hydrogen Treatment
Abstract
Widespread application of solar water splitting for energy conversion is largely dependent on the progress in developing not only efficient but also cheap and scalable photoelectrodes. Metal oxides, which can be deposited with scalable techniques and are relatively cheap, are particularly interesting, but high efficiency is still hindered by the poor carrier transport properties (i.e., carrier mobility and lifetime). Here, a mild hydrogen treatment is introduced to bismuth vanadate (BiVO<sub>4</sub>), which is one of the most promising metal oxide photoelectrodes, as a method to overcome the carrier transport limitations. Time-resolved microwave and terahertz conductivity measurements reveal more than twofold enhancement of the carrier lifetime for the hydrogen-treated BiVO<sub>4</sub>, without significantly affecting the carrier mobility. This is in contrast to the case of tungsten-doped BiVO<sub>4</sub>, although hydrogen is also a donor type dopant in BiVO<sub>4</sub>. The enhancement in carrier lifetime is found to be caused by significant reduction of trap-assisted recombination, either via passivation or reduction of deep trap states related to vanadium antisite on bismuth or vanadium interstitials according to density functional theory calculations. Overall, these findings provide further insights on the interplay between defect modulation and carrier transport in metal oxides, which benefit the development of low-cost, highly-efficient solar energy conversion devices. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim