Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Sheldon, Brian

  • Google
  • 3
  • 17
  • 987

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2024Thermo-mechanical characterization and stress engineering of Lipon solid electrolytecitations
  • 2017Mechanism of Lithium Metal Penetration through Inorganic Solid Electrolytes931citations
  • 2013Engineering of Graphene Layer Orientation to Attain High Rate Capability and Anisotropic Properties in Li‐Ion Battery Electrodes56citations

Places of action

Chart of shared publication
Athanasiou, Christos E.
1 / 2 shared
Cai, Truong
1 / 1 shared
Kalnaus, Sergiy
1 / 1 shared
Dudney, Nancy
1 / 1 shared
Porz, Lukas
1 / 13 shared
Rettenwander, Daniel
1 / 10 shared
Berendts, Stefan
1 / 7 shared
Chiang, Yetming
1 / 2 shared
Frömling, Till
1 / 5 shared
Thaman, Henry L.
1 / 1 shared
Carter, W. Craig
1 / 3 shared
Uecker, Reinhard
1 / 8 shared
Guo, Fei
1 / 3 shared
Mukhopadhyay, Amartya
1 / 1 shared
Xiao, Xingcheng
1 / 1 shared
Tokranov, Anton
1 / 1 shared
Hurt, Robert H.
1 / 1 shared
Chart of publication period
2024
2017
2013

Co-Authors (by relevance)

  • Athanasiou, Christos E.
  • Cai, Truong
  • Kalnaus, Sergiy
  • Dudney, Nancy
  • Porz, Lukas
  • Rettenwander, Daniel
  • Berendts, Stefan
  • Chiang, Yetming
  • Frömling, Till
  • Thaman, Henry L.
  • Carter, W. Craig
  • Uecker, Reinhard
  • Guo, Fei
  • Mukhopadhyay, Amartya
  • Xiao, Xingcheng
  • Tokranov, Anton
  • Hurt, Robert H.
OrganizationsLocationPeople

article

Mechanism of Lithium Metal Penetration through Inorganic Solid Electrolytes

  • Porz, Lukas
  • Sheldon, Brian
  • Rettenwander, Daniel
  • Berendts, Stefan
  • Chiang, Yetming
  • Frömling, Till
  • Thaman, Henry L.
  • Carter, W. Craig
  • Uecker, Reinhard
Abstract

<jats:title>Abstract</jats:title><jats:p>Li deposition is observed and measured on a solid electrolyte in the vicinity of a metallic current collector. Four types of ion‐conducting, inorganic solid electrolytes are tested: Amorphous 70/30 mol% Li<jats:sub>2</jats:sub>S‐P<jats:sub>2</jats:sub>S<jats:sub>5</jats:sub>, polycrystalline β‐Li<jats:sub>3</jats:sub>PS<jats:sub>4</jats:sub>, and polycrystalline and single‐crystalline Li<jats:sub>6</jats:sub>La<jats:sub>3</jats:sub>ZrTaO<jats:sub>12</jats:sub> garnet. The nature of lithium plating depends on the proximity of the current collector to defects such as surface cracks and on the current density. Lithium plating penetrates/infiltrates at defects, but only above a critical current density. Eventually, infiltration results in a short circuit between the current collector and the Li‐source (anode). These results do not depend on the electrolytes shear modulus and are thus not consistent with the Monroe–Newman model for “dendrites.” The observations suggest that Li‐plating in pre‐existing flaws produces crack‐tip stresses which drive crack propagation, and an electrochemomechanical model of plating‐induced Li infiltration is proposed. Lithium short‐circuits through solid electrolytes occurs through a fundamentally different process than through liquid electrolytes. The onset of Li infiltration depends on solid‐state electrolyte surface morphology, in particular the defect size and density.</jats:p>

Topics
  • Deposition
  • density
  • impedance spectroscopy
  • surface
  • amorphous
  • crack
  • Lithium
  • current density