People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Gasparini, Nicola
Imperial College London
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (20/20 displayed)
- 2024Dark Current in Broadband Perovskite–Organic Heterojunction Photodetectors Controlled by Interfacial Energy Band Offsetcitations
- 2024A novel selenophene based non-fullerene acceptor for near-infrared organic photodetectors with ultra-low dark currentcitations
- 2023Semitransparent Organic Photovoltaics Utilizing Intrinsic Charge Generation in Non‐Fullerene Acceptorscitations
- 2023Enhanced sub-1 eV detection in organic photodetectors through tuning polymer energetics and microstructurecitations
- 2023Neuromorphic computing based on halide perovskitescitations
- 2022Infrared Organic Photodetectors Employing Ultralow Bandgap Polymer and Non‐Fullerene Acceptors for Biometric Monitoringcitations
- 2022Synthetic nuances to maximize n-type organic electrochemical transistor and thermoelectric performance in fused lactam polymerscitations
- 2022Correlating Acceptor Structure and Blend Nanostructure with the Photostability of Nonfullerene Organic Solar Cellscitations
- 2022Synthetic Nuances to Maximize n-Type Organic Electrochemical Transistor and Thermoelectric Performance in Fused Lactam Polymers.citations
- 2022Overcoming nanoscale inhomogeneities in thin-film perovskites via exceptional post-annealing grain growth for enhanced photodetectioncitations
- 2021Interface Molecular engineering for laminated monolithic perovskite/silicon tandem solar cells with 80.4% fill factorcitations
- 2021Ternary organic photodetectors based on pseudo-binaries nonfullerene-based acceptorscitations
- 2020Side Chain Redistribution as a Strategy to Boost Organic Electrochemical Transistor Performance and Stabilitycitations
- 2020Side Chain Redistribution as a Strategy to Boost Organic Electrochemical Transistor Performance and Stability.citations
- 2020Unraveling the Complex Nanomorphology of Ternary Organic Solar Cells with Multimodal Analytical Transmission Electron Microscopycitations
- 2019Favorable Mixing Thermodynamics in Ternary Polymer Blends for Realizing High Efficiency Plastic Solar Cellscitations
- 2017Indacenodithienothiophene-Based Ternary Organic Solar Cellscitations
- 2017Controlling charge carrier recombination in ternary organic solar cells ; Unterdrückung von Ladungsträgerrekombination in ternären organischen Solarzellen
- 2016A Series of Pyrene-Substituted Silicon Phthalocyanines as Near-IR Sensitizers in Organic Ternary Solar Cellscitations
- 2015Integrated Molecular, Morphological and Interfacial Engineering towards Highly Efficient and Stable Solution-processed Small Molecule Organic Solar Cellscitations
Places of action
Organizations | Location | People |
---|
article
A Series of Pyrene-Substituted Silicon Phthalocyanines as Near-IR Sensitizers in Organic Ternary Solar Cells
Abstract
<jats:p>An attractive method to broaden the absorption bandwidth of polymer/fullerene‐based bulk heterojunction (BHJ) solar cells is to blend near infrared (near‐IR) sensitizers into the host system. Axial substitution of silicon phthalocyanines (Pcs) opens a possibility to modify the chemical, thermodynamic, electronic, and optical properties. Different axial substitutions are already designed to modify the thermodynamic properties of Pcs, but the impact of extending the <jats:italic>π</jats:italic>‐conjugation of the axial ligand on the opto‐electronic properties, as a function of the length of the alkyl spacer, has not been investigated yet. For this purpose, a novel series of pyrene‐substituted silicon phthalocyanines (SiPc‐Pys) with varying lengths of alkyl chain tethers are synthesized. The UV–vis and external quantum efficiency (EQE) results exhibit an efficient near IR sensitization up to 800 nm, clearly establishing the impact of the pyrene substitution. This yields an increase of over 20% in the short circuit current density (<jats:italic>J</jats:italic> <jats:sub>SC</jats:sub>) and over 50% in the power conversion efficiency (PCE) for the dye‐sensitized ternary device. Charge generation, transport properties, and microstructure are studied using different advanced technologies. Remarkably, these results provide guidance for the diverse and judicious selection of dye sensitizers to overcome the absorption limitation and achieve high efficiency ternary solar cells.</jats:p>