People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Kymakis, Emmanuel
Hellenic Mediterranean University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (14/14 displayed)
- 2024Engineering of perovskite/electron-transporting layer interface with transition metal chalcogenides for improving the performance of inverted perovskite solar cellscitations
- 2024Resistive switching memories with enhanced durability enabled by mixed-dimensional perfluoroarene perovskite heterostructurescitations
- 2023A Triethyleneglycol C60 Mono‐adduct Derivative for Efficient Electron Transport in Inverted Perovskite Solar Cellscitations
- 2023Piezo‐Phototronic In2Se3 Nanosheets as a Material Platform for Printable Electronics toward Multifunctional Sensing Applicationscitations
- 2022Functionalized BODIPYs as Tailor‐Made and Universal Interlayers for Efficient and Stable Organic and Perovskite Solar Cellscitations
- 2021Inverted perovskite solar cells with enhanced lifetime and thermal stability enabled by a metallic tantalum disulfide buffer layercitations
- 2020Solution Processed Pure Sulfide CZCTS Solar Cells with Efficiency 10.8% using Ultra-Thin CuO Intermediate Layercitations
- 2020Solution Processed Pure Sulfide CZCTS Solar Cells with Efficiency 10.8% using Ultra-Thin CuO Intermediate Layercitations
- 2020Metal Halide Perovskites for High‐Energy Radiation Detectioncitations
- 2020Benzothiadiazole Based Cascade Material to Boost the Performance of Inverted Ternary Organic Solar Cellscitations
- 2020Emphasizing the Operational Role of a Novel Graphene-Based Ink into High Performance Ternary Organic Solar Cellscitations
- 2019Limitations of a polymer-based hole transporting layer for application in planar inverted perovskite solar cellscitations
- 2016Plasmonic backscattering effect in high-efficient organic photovoltaic devicescitations
- 2013Organic solar cells with plasmonic layers formed by laser nanofabricationcitations
Places of action
Organizations | Location | People |
---|
article
Plasmonic backscattering effect in high-efficient organic photovoltaic devices
Abstract
A universal strategy for efficient light trapping through the incorporation of gold nanorods on the electron transport layer (rear) of organic photovoltaic devices is demonstrated. Utilizing the photons that are transmitted through the active layer of a bulk heterojunction photovoltaic device and would otherwise be lost, a significant enhancement in power conversion efficiency (PCE) of poly[N-9?-heptadecanyl-2,7-carbazole-alt-5,5-(4?,7?-di-2-thienyl-2?,1?,3?-benzothiadiazole)]:phenyl-C71-butyric acid methyl ester (PCDTBT:PC71BM) and poly[[4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b?]dithiophene-2,6-diyl][3-fluoro-2-[(2-ethylhexyl)carbonyl]thieno[3,4-b] thiophenediyl]] (PTB7):PC71BM by ?13% and ?8%, respectively. PCEs over 8% are reported for devices based on the PTB7:PC71BM blend. A comprehensive optical and electrical characterization of our devices to clarify the influence of gold nanorods on exciton generation, dissociation, charge recombination, and transport inside the thin film devices is performed. By correlating the experimental data with detailed numerical simulations, the near-field and far-field scattering effects are separated of gold nanorods (Au NRs), and confidently attribute part of the performance enhancement to the enhanced absorption caused by backscattering. While, a secondary contribution from the Au NRs that partially protrude inside the active layer and exhibit strong near-fields due to localized surface plasmon resonance effects is also observed but is minor in magnitude. Furthermore, another important contribution to the enhanced performance is electrical in nature and comes from the increased charge collection probability.