People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Carlé, Jon Eggert
Technical University of Denmark
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (14/14 displayed)
- 2017Conjugated Polymers Via Direct Arylation Polymerization in Continuous Flow: Minimizing the Cost and Batch-to-Batch Variations for High-Throughput Energy Conversioncitations
- 2015Matrix Organization and Merit Factor Evaluation as a Method to Address the Challenge of Finding a Polymer Material for Roll Coated Polymer Solar Cellscitations
- 2015Matrix Organization and Merit Factor Evaluation as a Method to Address the Challenge of Finding a Polymer Material for Roll Coated Polymer Solar Cellscitations
- 2015Roll-to-Roll Printed Silver Nanowire Semitransparent Electrodes for Fully Ambient Solution-Processed Tandem Polymer Solar Cellscitations
- 2015Upscaling of Perovskite Solar Cells: Fully Ambient Roll Processing of Flexible Perovskite Solar Cells with Printed Back Electrodescitations
- 2015Upscaling of Perovskite Solar Cells: Fully Ambient Roll Processing of Flexible Perovskite Solar Cells with Printed Back Electrodescitations
- 2015Making Ends Meet: Flow Synthesis as the Answer to Reproducible High-Performance Conjugated Polymers on the Scale that Roll-to-Roll Processing Demandscitations
- 2014All-Solution-Processed, Ambient Method for ITO-Free, Roll-Coated Tandem Polymer Solar Cells using Solution- Processed Metal Filmscitations
- 2013Development of polymers for large scale roll-to-roll processing of polymer solar cells
- 2013A laboratory scale approach to polymer solar cells using one coating/printing machine, flexible substrates, no ITO, no vacuum and no spincoatingcitations
- 2012Rapid flash annealing of thermally reactive copolymers in a roll-to-roll process for polymer solar cellscitations
- 2011Aqueous Processing of Low-Band-Gap Polymer Solar Cells Using Roll-to-Roll Methodscitations
- 2011Aqueous Processing of Low-Band-Gap Polymer Solar Cells Using Roll-to-Roll Methodscitations
- 2011Fused thiophene/quinoxaline low band gap polymers for photovoltaic's with increased photochemical stabilitycitations
Places of action
Organizations | Location | People |
---|
article
Matrix Organization and Merit Factor Evaluation as a Method to Address the Challenge of Finding a Polymer Material for Roll Coated Polymer Solar Cells
Abstract
The results presented demonstrate how the screening of 104 light-absorbing low band gap polymers for suitability in roll coated polymer solar cells can be accomplished through rational synthesis according to a matrix where 8 donor and 13 acceptor units are organized in rows and columns. Synthesis of all the polymers corresponding to all combinations of donor and acceptor units is followed by characterization of all the materials with respect to molecular weight, electrochemical energy levels, band gaps, photochemical stability, carrier mobility, and photovoltaic parameters. The photovoltaic evaluation is carried out with specific reference to scalable manufacture, which includes large area (1 cm 2 ), stable inverted device architecture, an indium-tin-oxide-free fully printed flexible front electrode with ZnO/PEDOT:PSS (poly(3,4-ethylenedioxythiophene):polystyrene sulfonate), and a printed silver comb back electrode structure. The matrix organization enables fast identification of active layer materials according to a weighted merit factor that includes more than simply the power conversion efficiency and is used as a method to identify the lead candidates. Based on several characteristics included in the merit factor, it is found that 13 out of the 104 synthesized polymers outperformed poly(3-hexylthiophene) under the chosen processing conditions and thus can be suitable for further development.