People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Schwartz, Benjamin
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (6/6 displayed)
- 2023The effects of humidity on the electrical properties and carrier mobility of semiconducting polymers anion-exchange doped with hygroscopic saltscitations
- 2020Tunable Dopants with Intrinsic Counterion Separation Reveal the Effects of Electron Affinity on Dopant Intercalation and Free Carrier Production in Sequentially Doped Conjugated Polymer Filmscitations
- 2019Ultrafast transient absorption spectroscopy of doped P3HT films: distinguishing free and trapped polaronscitations
- 2017The Effects of Crystallinity on Charge Transport and the Structure of Sequentially Processed F<sub>4</sub>TCNQ‐Doped Conjugated Polymer Filmscitations
- 2015Sequential Processing for Organic Photovoltaics: Design Rules for Morphology Control by Tailored Semi‐Orthogonal Solvent Blendscitations
- 2012Photoinduced Charge Carrier Generation and Decay in Sequentially Deposited Polymer/Fullerene Layers: Bulk Heterojunction vs. Planar Interfacecitations
Places of action
Organizations | Location | People |
---|
article
Sequential Processing for Organic Photovoltaics: Design Rules for Morphology Control by Tailored Semi‐Orthogonal Solvent Blends
Abstract
<jats:p>Design rules are presented for significantly expanding sequential processing (SqP) into previously inaccessible polymer:fullerene systems by tailoring binary solvent blends for fullerene deposition. Starting with a base solvent that has high fullerene solubility, 2‐chlorophenol (2‐CP), ellipsometry‐based swelling experiments are used to investigate different co‐solvents for the fullerene‐casting solution. By tuning the Flory‐Huggins <jats:italic>χ</jats:italic> parameter of the 2‐CP/co‐solvent blend, it is possible to optimally swell the polymer of interest for fullerene interdiffusion without dissolution of the polymer underlayer. In this way solar cell power conversion efficiencies are obtained for the PTB7 (poly[(4,8‐bis[(2‐ethylhexyl)oxy]benzo[1,2‐<jats:italic>b</jats:italic>:4,5‐<jats:italic>b</jats:italic>′]dithiophene‐2,6‐diyl)(3‐fluoro‐2‐[(2‐ethylhexyl)carbonyl]thieno[3,4‐<jats:italic>b</jats:italic>]thiophenediyl)]) and PC<jats:sub>61</jats:sub>BM (phenyl‐C<jats:sub>61</jats:sub>‐butyric acid methyl ester) materials combination that match those of blend‐cast films. Both semicrystalline (e.g., P3HT (poly(3‐hexylthiophene‐2,5‐diyl)) and entirely amorphous (e.g., PSDTTT (poly[(4,8‐di(2‐butyloxy)benzo[1,2‐b:4,5‐b′]dithiophene‐2,6‐diyl)‐alt‐(2,5‐bis(4,4′‐bis(2‐octyl)dithieno[3,2‐b:2′3′‐d]silole‐2,6‐diyl)thiazolo[5,4‐d]thiazole)]) conjugated polymers can be processed into highly efficient photovoltaic devices using the solvent‐blend SqP design rules. Grazing‐incidence wide‐angle x‐ray diffraction experiments confirm that proper choice of the fullerene casting co‐solvent yields well‐ordered interdispersed bulk heterojunction (BHJ) morphologies without the need for subsequent thermal annealing or the use of trace solvent additives (e.g., diiodooctane). The results open SqP to polymer/fullerene systems that are currently incompatible with traditional methods of device fabrication, and make BHJ morphology control a more tractable problem.</jats:p>