People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Carlé, Jon Eggert
Technical University of Denmark
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (14/14 displayed)
- 2017Conjugated Polymers Via Direct Arylation Polymerization in Continuous Flow: Minimizing the Cost and Batch-to-Batch Variations for High-Throughput Energy Conversioncitations
- 2015Matrix Organization and Merit Factor Evaluation as a Method to Address the Challenge of Finding a Polymer Material for Roll Coated Polymer Solar Cellscitations
- 2015Matrix Organization and Merit Factor Evaluation as a Method to Address the Challenge of Finding a Polymer Material for Roll Coated Polymer Solar Cellscitations
- 2015Roll-to-Roll Printed Silver Nanowire Semitransparent Electrodes for Fully Ambient Solution-Processed Tandem Polymer Solar Cellscitations
- 2015Upscaling of Perovskite Solar Cells: Fully Ambient Roll Processing of Flexible Perovskite Solar Cells with Printed Back Electrodescitations
- 2015Upscaling of Perovskite Solar Cells: Fully Ambient Roll Processing of Flexible Perovskite Solar Cells with Printed Back Electrodescitations
- 2015Making Ends Meet: Flow Synthesis as the Answer to Reproducible High-Performance Conjugated Polymers on the Scale that Roll-to-Roll Processing Demandscitations
- 2014All-Solution-Processed, Ambient Method for ITO-Free, Roll-Coated Tandem Polymer Solar Cells using Solution- Processed Metal Filmscitations
- 2013Development of polymers for large scale roll-to-roll processing of polymer solar cells
- 2013A laboratory scale approach to polymer solar cells using one coating/printing machine, flexible substrates, no ITO, no vacuum and no spincoatingcitations
- 2012Rapid flash annealing of thermally reactive copolymers in a roll-to-roll process for polymer solar cellscitations
- 2011Aqueous Processing of Low-Band-Gap Polymer Solar Cells Using Roll-to-Roll Methodscitations
- 2011Aqueous Processing of Low-Band-Gap Polymer Solar Cells Using Roll-to-Roll Methodscitations
- 2011Fused thiophene/quinoxaline low band gap polymers for photovoltaic's with increased photochemical stabilitycitations
Places of action
Organizations | Location | People |
---|
article
Making Ends Meet: Flow Synthesis as the Answer to Reproducible High-Performance Conjugated Polymers on the Scale that Roll-to-Roll Processing Demands
Abstract
Continuous flow methods are employed for the controlled polymerization of the roll-to-roll (R2R) compatible polymer PBDTTTz-4 including optimization and upscaling experiments. The polymerization rate and materials’ quality can be increased significantly with the continuous fl ow method where reaction times down to 10 min afforded PBDTTTz-4 with high molecular weight and a constant quality. The flow method enables full control of the molecular weight via tuning of the flow speed, catalyst loading, and temperature and avoids variation in materials’ quality associated with conventional batch synthesis. Upscaling from 300 mg batch synthesis to 10 g flow synthesis affords PBDTTTz-4 with a production rate of up to 120 g day −1 for a very simple in-house build flow reactor. An average power conversion efficiency (PCE) of 3.5% is achieved on a small scale (1 cm 2 ) and an average PCE of 3.3% is achieved on a large scale (29 cm2 ). This shows that small device efficiencies can be scaled when using full R2R processing of flexible and encapsulated carbon-based modules without the use of vacuum, indium-tin-oxide, or silver, with the best achieving a PCE of 3.8% PCE.