Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Mcdaniel, Anthony H.

  • Google
  • 5
  • 28
  • 209

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (5/5 displayed)

  • 2021Computationally Accelerated Discovery and Experimental Demonstration of Gd0.5La0.5Co0.5Fe0.5O3 for Solar Thermochemical Hydrogen Production18citations
  • 2019Solar thermochemical hydrogen production with complex perovskite oxidescitations
  • 2016Scaling effects in sodium zirconium silicate phosphate (Na<sub>1+</sub><sub><i>x</i></sub>Zr<sub>2</sub>Si<sub><i>x</i></sub>P<sub>3-</sub><sub><i>x</i></sub>O<sub>12</sub>) ion-conducting thin films28citations
  • 2015The Science of Battery Degradationcitations
  • 2014Considerations in the Design of Materials for Solar‐Driven Fuel Production Using Metal‐Oxide Thermochemical Cycles163citations

Places of action

Chart of shared publication
Rodriguez, Mark A.
2 / 2 shared
Morelock, Ryan J.
1 / 1 shared
Musgrave, Charles B.
1 / 5 shared
Coker, Eric N.
1 / 1 shared
Ambrosini, Andrea
1 / 2 shared
Park, James Eujin
1 / 1 shared
Bare, Zachary J. L.
1 / 1 shared
Rigdon, Katharine H.
1 / 1 shared
Wheeler, David R.
1 / 1 shared
Jones, Brad H.
1 / 5 shared
Gurniak, Emily
1 / 1 shared
Ihlefeld, Jon F.
1 / 1 shared
Mccarty, Kevin
1 / 1 shared
El Gabaly Marquez, Farid
1 / 1 shared
Zavadil, Kevin R.
1 / 2 shared
Talin, Alec A.
1 / 1 shared
Tenney, Craig M.
1 / 1 shared
Sullivan, John P.
1 / 2 shared
Leung, Kevin
1 / 1 shared
Hayden, Carl C.
1 / 1 shared
Nagasubramanian, Ganesan
1 / 1 shared
Sugar, Joshua Daniel
1 / 5 shared
Fenton, Kyle R.
1 / 1 shared
Jungjohann, Katherine Leigh
1 / 1 shared
Kliewer, Christopher Jesse
1 / 2 shared
Harris, Charles Thomas
1 / 2 shared
Hudak, Nicholas S.
1 / 2 shared
Allendorf, Mark D.
1 / 14 shared
Chart of publication period
2021
2019
2016
2015
2014

Co-Authors (by relevance)

  • Rodriguez, Mark A.
  • Morelock, Ryan J.
  • Musgrave, Charles B.
  • Coker, Eric N.
  • Ambrosini, Andrea
  • Park, James Eujin
  • Bare, Zachary J. L.
  • Rigdon, Katharine H.
  • Wheeler, David R.
  • Jones, Brad H.
  • Gurniak, Emily
  • Ihlefeld, Jon F.
  • Mccarty, Kevin
  • El Gabaly Marquez, Farid
  • Zavadil, Kevin R.
  • Talin, Alec A.
  • Tenney, Craig M.
  • Sullivan, John P.
  • Leung, Kevin
  • Hayden, Carl C.
  • Nagasubramanian, Ganesan
  • Sugar, Joshua Daniel
  • Fenton, Kyle R.
  • Jungjohann, Katherine Leigh
  • Kliewer, Christopher Jesse
  • Harris, Charles Thomas
  • Hudak, Nicholas S.
  • Allendorf, Mark D.
OrganizationsLocationPeople

article

Considerations in the Design of Materials for Solar‐Driven Fuel Production Using Metal‐Oxide Thermochemical Cycles

  • Mcdaniel, Anthony H.
  • Allendorf, Mark D.
Abstract

<jats:p>With demand for energy increasing worldwide and an ever‐stronger case building for anthropogenic climate change, the need for carbon‐neutral fuels is becoming an imperative. Extensive transportation infrastructure based on liquid hydrocarbon fuels motivates development of processes using solar energy to convert CO<jats:sub>2</jats:sub> and H<jats:sub>2</jats:sub>O to fuel precursors such as synthesis gas. Here, perspectives concerning the use of solar‐driven thermochemical cycles using metal oxides to produce fuel precursors are given and, in particular, the important relationship between reactor design and material selection is discussed. Considering both a detailed thermodynamic analysis and factors such as reaction kinetics, volatility, and phase stability, an integrated analytical approach that facilitates material design is presented. These concepts are illustrated using three oxide materials currently receiving considerable attention: metal‐substituted ferrites, ceria, and doped cerias. Although none of these materials is “ideal,” the tradeoffs made in selecting any one of them are clearly indicated, providing a starting point for assessing the feasibility of alternative materials developed in the future.</jats:p>

Topics
  • impedance spectroscopy
  • Carbon
  • phase
  • phase stability