People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Davies, Joshua A.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (2/2 displayed)
Places of action
Organizations | Location | People |
---|
article
In-situ crosslinking and n-doping of semiconducting polymers and their application as efficient electron-transporting materials in inverted polymer solar cells
Abstract
In this study, we demonstrate in-situ n-doping and crosslinking of semiconducting polymers as efficient electron-transporting materials for inverted configuration polymer solar cells. The semiconducting polymers were crosslinked with bis(perfluorophenyl) azide (bis-PFPA) to form a robust solvent-resistant film, thereby preventing solvent-induced erosion during subsequent solution-based device processing. In addition, chemical n-doping of semiconducting polymers with (4-(1,3-dimethyl-2,3-dihydro-1 <i>H</i>-benzoimidazol-2-yl)phenyl) dimethylamine (N-DMBI) substantially improved the power conversion efficiency of solar cells from 0.69% to 3.42%. These results open the way for progress on generally applicable polymeric interface materials, providing not only high device performance but also an effective fabrication method for solution-processed multilayer solar cell devices. © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.