Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Talnack, Felix

  • Google
  • 5
  • 42
  • 48

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (5/5 displayed)

  • 2024Impact of Thermal Annealing on the Dissolution of Semiconducting Polymer Thin Films1citations
  • 2023Band Structure Engineering in Highly Crystalline Organic Semiconductors3citations
  • 2022Thermal behavior and polymorphism of 2,9-didecyldinaphtho[2,3-b:2′,3′-f]thieno[3,2-b] thiophene thin films12citations
  • 2021Band gap engineering in blended organic semiconductor films based on dielectric interactions31citations
  • 2021Multimode Operation of Organic--Inorganic Hybrid Thin-Film Transistors Based on Solution-Processed Indium Oxide Films1citations

Places of action

Chart of shared publication
Hambsch, Mike
4 / 17 shared
Prasoon, Anupam
1 / 3 shared
Boye, Susanne
1 / 2 shared
Haase, Katherina
2 / 6 shared
Liu, Jinxin
1 / 1 shared
Andrade, Jonathan Perez
1 / 1 shared
Mannsfeld, Stefan C. B.
4 / 18 shared
Millek, Vojtech
1 / 3 shared
Feng, Xinliang
1 / 58 shared
Bai, Shaoling
1 / 1 shared
Arnhold, Kerstin
1 / 2 shared
Hutsch, Sebastian
3 / 4 shared
Wang, Shu Jen
1 / 1 shared
Thiersch, Heiner
1 / 1 shared
Hofmann, Anna Lena
1 / 1 shared
Ortmann, Frank
3 / 22 shared
Deconinck, Marielle
1 / 4 shared
Vaynzof, Yana
1 / 31 shared
Kleemann, Hans
2 / 9 shared
Zhang, Zongbao
1 / 1 shared
Huang, Shiyu
1 / 1 shared
Leo, Karl
2 / 39 shared
Bretschneider, Michael
1 / 1 shared
Malfois, Marc
1 / 4 shared
Krupskaya, Yulia
1 / 4 shared
Büchner, Bernd
1 / 35 shared
Schellhammer, Sebastian
1 / 1 shared
Bäuerle, Peter
1 / 2 shared
Tvingstedt, Kristofer
1 / 4 shared
Ortstein, Katrin
2 / 5 shared
Koch, Norbert
1 / 40 shared
Vogt, Astrid
1 / 1 shared
Benduhn, Johannes
1 / 10 shared
Schwarze, Martin
1 / 5 shared
Kublitski, Jonas
1 / 2 shared
Wegner, Berthold
1 / 1 shared
Loffler, Markus
1 / 1 shared
Li, Baiqiang
1 / 1 shared
Tang, Tianyu
1 / 1 shared
Zessin, Jakob
1 / 1 shared
Rellinghaus, Bernd
1 / 19 shared
Mannsfeld, Stefan Cb
1 / 4 shared
Chart of publication period
2024
2023
2022
2021

Co-Authors (by relevance)

  • Hambsch, Mike
  • Prasoon, Anupam
  • Boye, Susanne
  • Haase, Katherina
  • Liu, Jinxin
  • Andrade, Jonathan Perez
  • Mannsfeld, Stefan C. B.
  • Millek, Vojtech
  • Feng, Xinliang
  • Bai, Shaoling
  • Arnhold, Kerstin
  • Hutsch, Sebastian
  • Wang, Shu Jen
  • Thiersch, Heiner
  • Hofmann, Anna Lena
  • Ortmann, Frank
  • Deconinck, Marielle
  • Vaynzof, Yana
  • Kleemann, Hans
  • Zhang, Zongbao
  • Huang, Shiyu
  • Leo, Karl
  • Bretschneider, Michael
  • Malfois, Marc
  • Krupskaya, Yulia
  • Büchner, Bernd
  • Schellhammer, Sebastian
  • Bäuerle, Peter
  • Tvingstedt, Kristofer
  • Ortstein, Katrin
  • Koch, Norbert
  • Vogt, Astrid
  • Benduhn, Johannes
  • Schwarze, Martin
  • Kublitski, Jonas
  • Wegner, Berthold
  • Loffler, Markus
  • Li, Baiqiang
  • Tang, Tianyu
  • Zessin, Jakob
  • Rellinghaus, Bernd
  • Mannsfeld, Stefan Cb
OrganizationsLocationPeople

article

Impact of Thermal Annealing on the Dissolution of Semiconducting Polymer Thin Films

  • Hambsch, Mike
  • Prasoon, Anupam
  • Boye, Susanne
  • Haase, Katherina
  • Liu, Jinxin
  • Talnack, Felix
  • Andrade, Jonathan Perez
  • Mannsfeld, Stefan C. B.
  • Millek, Vojtech
  • Feng, Xinliang
  • Bai, Shaoling
  • Arnhold, Kerstin
Abstract

<p>Here, the effect of thermal annealing (TA) on the stability of solution-sheared thin films of the semiconducting polymer poly[2,5-bis(2-octyldodecyl)pyrrolo[3,4-c]pyrrole-1,4(2H,5H)-dione-3,6-diyl)-alt-(2,2′;5′,2′’;5′’,2′’’-quaterthiophen-5,5′’’-diyl)] (PDPP4T) against the original coating solvent is studied, and it is shown that TA significantly improves the solvent resistance of semiconducting polymer films. Specifically, after the thin films are annealed at or above a critical temperature, the thin film thickness is largely retained when exposed to the original solvent, while for lower annealing temperatures material loss occurs, i.e., the thin film thickness is reduced due to rapid dissolution. The results of various techniques including grazing-incidence wide-angle x-ray scattering (GIWAXS), atomic force microscopy (AFM), and ultraviolet-visible-near infrared (UV–vis-NIR) absorption spectroscopy suggest physical changes as the cause for the increased solvent resistance. Such annealed films also show stable electrical characteristics in bottom-gate, top-contact (BGTC) organic field-effect transistors (OFETs) even after solvent exposure. In initial tests, a multitude of technologically relevant polymers show such behavior, underlining the potential impact of such temperature treatments for the fabrication of multi-layer polymer devices.</p>

Topics
  • impedance spectroscopy
  • polymer
  • thin film
  • atomic force microscopy
  • annealing
  • wide-angle X-ray scattering
  • critical temperature