Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Kuhfuß, Michel

  • Google
  • 7
  • 24
  • 28

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (7/7 displayed)

  • 2024In situ electric field-dependent structural changes in (Ba,Ca)(Zr,Ti)O 3 with varying grain size6citations
  • 2024Influence of Grain Size on Electromechanical Properties of (Ba,Ca)(Zr,Ti)O3: A Multiscale Analysis Using Spark Plasma Sintering and Aerosol Deposition7citations
  • 2024In situ electric field-dependent structural changes in (Ba,Ca)(Zr,Ti)O3 with varying grain size6citations
  • 2024Influence of Grain Size on Electromechanical Properties of (Ba,Ca)(Zr,Ti)O 3 : A Multiscale Analysis Using Spark Plasma Sintering and Aerosol Deposition7citations
  • 2024Novel Sol-Gel Synthesis Route for Ce- and V-Doped Ba0.85Ca0.15Ti0.9Zr0.1O3 Piezoceramics1citations
  • 2023Control of Microstructure in Iron–Carbon Thin Films by Means of Electromigrationcitations
  • 2023Study on Growth of Tungsten Bronze Phase from Niobate Perovskite Ceramics in Controlled Atmosphere for Photoferroelectric Applications1citations

Places of action

Chart of shared publication
Martin, Alexander
3 / 3 shared
Khansur, Neamul H.
4 / 16 shared
Kakimoto, Ken-Ichi
4 / 8 shared
Xie, Bingying
2 / 2 shared
Kleppe, Annette K.
2 / 5 shared
Maier, Juliana G.
4 / 6 shared
Webber, Kyle G.
4 / 145 shared
Hall, David
2 / 17 shared
Algueró, Miguel
2 / 13 shared
Hall, David A.
2 / 51 shared
Gadelmawla, Ahmed
2 / 7 shared
Urushihara, Daisuke
2 / 2 shared
Martin, Alexander J.
1 / 1 shared
Fey, Tobias
1 / 16 shared
Weichelt, Michelle
1 / 1 shared
Da Silva Marques, Larissa
1 / 1 shared
Brede, Thomas
1 / 2 shared
Kirchheim, Reiner
1 / 6 shared
Volkert, Cynthia
1 / 1 shared
Bai, Yang
1 / 9 shared
Papp, Christian
1 / 9 shared
Shi, Xi
1 / 2 shared
Wichmann, Christoph
1 / 4 shared
Moritz, Michael
1 / 4 shared
Chart of publication period
2024
2023

Co-Authors (by relevance)

  • Martin, Alexander
  • Khansur, Neamul H.
  • Kakimoto, Ken-Ichi
  • Xie, Bingying
  • Kleppe, Annette K.
  • Maier, Juliana G.
  • Webber, Kyle G.
  • Hall, David
  • Algueró, Miguel
  • Hall, David A.
  • Gadelmawla, Ahmed
  • Urushihara, Daisuke
  • Martin, Alexander J.
  • Fey, Tobias
  • Weichelt, Michelle
  • Da Silva Marques, Larissa
  • Brede, Thomas
  • Kirchheim, Reiner
  • Volkert, Cynthia
  • Bai, Yang
  • Papp, Christian
  • Shi, Xi
  • Wichmann, Christoph
  • Moritz, Michael
OrganizationsLocationPeople

article

Study on Growth of Tungsten Bronze Phase from Niobate Perovskite Ceramics in Controlled Atmosphere for Photoferroelectric Applications

  • Bai, Yang
  • Papp, Christian
  • Shi, Xi
  • Wichmann, Christoph
  • Moritz, Michael
  • Kuhfuß, Michel
Abstract

<jats:title>Abstract</jats:title><jats:p>Recent research has found that by introducing A‐site deficiency into Ba/Ni co‐doped (K,Na)NbO<jats:sub>3</jats:sub> ABO<jats:sub>3</jats:sub>‐type perovskite, a beneficial interface for photoferroelectric applications is formed between the perovskite and tungsten bronze (TB) phases. To date, such an interface is formed only spontaneously, and the growth mechanism of the TB phase in the perovskite phase is unclear. This work investigates controlled interface formation using KNBNNO (K<jats:sub>0.50</jats:sub>Na<jats:sub>0.44</jats:sub>Ba<jats:sub>0.04</jats:sub>Ni<jats:sub>0.02</jats:sub>Nb<jats:sub>0.98</jats:sub>O<jats:sub>2.98</jats:sub>) annealed at different temperatures for different durations, and in various atmospheres. Structural, microstructural, and chemical analyses suggest that vacuum, N<jats:sub>2,</jats:sub> and O<jats:sub>2</jats:sub> atmospheres promote the growth of the TB phase from the sample surface, of which the thickness increases with annealing temperature and duration. In contrast, annealing in air does not promote such growth due to lower evaporation of K and Na. Among all atmospheres, the growth starts the earliest, i.e., at 800 °C, in vacuum compared to that as late as 1000 °C in O<jats:sub>2</jats:sub>. The association of growth of the TB phase with the degree of alkali volatilization that is dependent on the atmosphere, and that with the resultant variation in diffusion rate, uncovers the formation mechanism of the beneficial interface that may also be applicable to other KNN‐based materials for advanced photoferroelectric applications.</jats:p>

Topics
  • perovskite
  • impedance spectroscopy
  • surface
  • phase
  • annealing
  • tungsten
  • bronze
  • evaporation