Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Francis, Benjamin

  • Google
  • 1
  • 12
  • 4

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2023ZrNb(CO) RF Superconducting Thin Film with High Critical Temperature in the Theoretical Limit4citations

Places of action

Chart of shared publication
Muller, David A.
1 / 12 shared
Arias, Tomas A.
1 / 1 shared
Sitaraman, Nathan
1 / 1 shared
Transtrum, Mark K.
1 / 1 shared
Dare, Darrah K.
1 / 2 shared
Baraissov, Zhaslan
1 / 2 shared
Hire, Ajinkya C.
1 / 3 shared
Hennig, Richard
1 / 1 shared
Liepe, Matthias U.
1 / 1 shared
Thompson, Michael O.
1 / 2 shared
Howard, Katrina
1 / 1 shared
Oseroff, Thomas
1 / 1 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Muller, David A.
  • Arias, Tomas A.
  • Sitaraman, Nathan
  • Transtrum, Mark K.
  • Dare, Darrah K.
  • Baraissov, Zhaslan
  • Hire, Ajinkya C.
  • Hennig, Richard
  • Liepe, Matthias U.
  • Thompson, Michael O.
  • Howard, Katrina
  • Oseroff, Thomas
OrganizationsLocationPeople

article

ZrNb(CO) RF Superconducting Thin Film with High Critical Temperature in the Theoretical Limit

  • Muller, David A.
  • Arias, Tomas A.
  • Sitaraman, Nathan
  • Transtrum, Mark K.
  • Dare, Darrah K.
  • Baraissov, Zhaslan
  • Hire, Ajinkya C.
  • Hennig, Richard
  • Liepe, Matthias U.
  • Thompson, Michael O.
  • Howard, Katrina
  • Francis, Benjamin
  • Oseroff, Thomas
Abstract

<jats:title>Abstract</jats:title><jats:p>Superconducting radio‐frequency (SRF) resonators are critical components for particle accelerator applications, such as free‐electron lasers, and for emerging technologies in quantum computing. Developing advanced materials and their deposition processes to produce RF superconductors that yield nΩ surface resistances is a key metric for the wider adoption of SRF technology. Here, ZrNb(CO) RF superconducting films with high critical temperatures (<jats:italic>T</jats:italic><jats:sub>c</jats:sub>) achieved for the first time under ambient pressure are reported. The attainment of a <jats:italic>T</jats:italic><jats:sub>c</jats:sub> near the theoretical limit for this material without applied pressure is promising for its use in practical applications. A range of <jats:italic>T</jats:italic><jats:sub>c</jats:sub>, likely arising from Zr doping variation, may allow a tunable superconducting coherence length that lowers the sensitivity to material defects when an ultra‐low surface resistance is required. The ZrNb(CO) films are synthesized using a low‐temperature (100 – 200 °C) electrochemical recipe combined with thermal annealing. The phase transformation as a function of annealing temperature and time is optimized by the evaporated Zr‐Nb diffusion couples. Through phase control, one avoids hexagonal Zr phases that are equilibrium‐stable but degrade <jats:italic>T</jats:italic><jats:sub>c</jats:sub>. X‐ray and electron diffraction combined with photoelectron spectroscopy reveal a system containing cubic β‐ZrNb mixed with rocksalt NbC and low‐dielectric‐loss ZrO<jats:sub>2</jats:sub>. Proof‐of‐concept RF performance of ZrNb(CO) on an SRF sample test system is demonstrated. BCS resistance trends lower than reference Nb, while quench fields occur at approximately 35 mT. The results demonstrate the potential of ZrNb(CO) thin films for particle accelerators and other SRF applications.</jats:p>

Topics
  • Deposition
  • impedance spectroscopy
  • surface
  • phase
  • thin film
  • electron diffraction
  • defect
  • annealing
  • photoelectron spectroscopy
  • critical temperature