People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Bespalova, Kristina
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (8/8 displayed)
- 2024Metalorganic Chemical Vapor Deposition of AlN on High Degree Roughness Vertical Surfaces for MEMS Fabricationcitations
- 2023In-Plane AlN-based Actuator: Toward a New Generation of Piezoelectric MEMScitations
- 2022Unlocking the Potential of Piezoelectric Films Grown on Vertical Surfaces for Inertial MEMScitations
- 2021Characterization of AlScN-based multilayer systems for piezoelectric micromachined ultrasound transducer (pMUT) fabricationcitations
- 2021Characterization of AlScN-based multilayer systems for piezoelectric micromachined ultrasound transducer (pMUT) fabricationcitations
- 2021Characterization of AlScN-Based Multilayer Systems for Piezoelectric Micromachined Ultrasound Transducer (pMUT) Fabricationcitations
- 2021Atomic layer deposition of AlN using atomic layer annealing - Towards high-quality AlN on vertical sidewallscitations
- 2021Effect of crystal structure on the Young's modulus of GaP nanowirescitations
Places of action
Organizations | Location | People |
---|
article
In-Plane AlN-based Actuator: Toward a New Generation of Piezoelectric MEMS
Abstract
<p>A novel design that utilizes aluminum nitride (AlN) piezoelectric thin films deposited on vertical surfaces for lateral motion and sensing is a step toward emerging multi-axial microelectromechanical systems (MEMS). This work demonstrates the fabrication process and potential applications of an in-plane moving piezoactuator. The actuator is excited using the inverse piezoelectric effect of the AlN thin film grown on the vertical surfaces of a Si cantilever. Lateral motion of the actuator is enabled when a voltage is applied between the top and bottom electrodes of the device, which are highly doped Si and titanium nitride thin film. The motion of the actuator is captured using scanning electron microscope.</p>