Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Ghazanfari, Mohammad R.

  • Google
  • 1
  • 11
  • 7

Freie Universität Berlin

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2022Large Exchange Bias, High Dielectric Constant, and Outstanding Ionic Conductivity in a Single‐Phase Spin Glass7citations

Places of action

Chart of shared publication
Dehnen, Stefanie
1 / 5 shared
Vrijmoed, Johannes C.
1 / 2 shared
Oeckler, Oliver
1 / 13 shared
Siemensmeyer, Konrad
1 / 8 shared
Thiele, Günther
1 / 2 shared
Peters, Bertram
1 / 1 shared
Liesegang, Moritz
1 / 5 shared
Staab, Lennart
1 / 2 shared
Jerabek, Paul
1 / 10 shared
Santhosh, Archa
1 / 9 shared
Fuß, Friederike
1 / 1 shared
Chart of publication period
2022

Co-Authors (by relevance)

  • Dehnen, Stefanie
  • Vrijmoed, Johannes C.
  • Oeckler, Oliver
  • Siemensmeyer, Konrad
  • Thiele, Günther
  • Peters, Bertram
  • Liesegang, Moritz
  • Staab, Lennart
  • Jerabek, Paul
  • Santhosh, Archa
  • Fuß, Friederike
OrganizationsLocationPeople

article

Large Exchange Bias, High Dielectric Constant, and Outstanding Ionic Conductivity in a Single‐Phase Spin Glass

  • Dehnen, Stefanie
  • Vrijmoed, Johannes C.
  • Oeckler, Oliver
  • Siemensmeyer, Konrad
  • Thiele, Günther
  • Peters, Bertram
  • Liesegang, Moritz
  • Staab, Lennart
  • Jerabek, Paul
  • Ghazanfari, Mohammad R.
  • Santhosh, Archa
  • Fuß, Friederike
Abstract

The multigram synthesis of K2[Fe3S4] starting from K2S and FeS is presented, and its electronic and magnetic properties are investigated. The title compound obtains a defect variant of the K[Fe2Se2] structure type. Dielectric and impedance measurements indicate a dielectric constant of 1120 at 1 kHz and an outstanding ionic conductivity of 24.37 mS cm–1 at 295 K, which is in the range of the highest reported value for potential solid‐state electrolytes for potassium‐ion batteries. The Seebeck coefficient of the n‐type conductor amounts to −60 µV K−1 at 973 K. The mismatch of the measured electrical resistivity and the predicted metal‐like band structure by periodic quantum chemical calculations indicates Mott insulating behavior. Magnetometry demonstrates temperature‐dependent, large exchange bias fields of 35 mT, as a consequence of the coexistence of spin glass and antiferromagnetic orderings due to the iron vacancies in the lattice. In addition, the decreasing training effects of 34% in the exchange bias are identified at temperatures lower than 20 K. These results demonstrate the critical role of iron vacancies in tuning the electronic and magnetic properties and a multifunctional material from abundant and accessible elements.

Topics
  • impedance spectroscopy
  • compound
  • resistivity
  • phase
  • dielectric constant
  • glass
  • glass
  • mass spectrometry
  • Potassium
  • defect
  • iron
  • band structure
  • vacancy