People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Bigi, Chiara
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (38/38 displayed)
- 2024Epitaxial growth of AgCrSe2 thin films by molecular beam epitaxy
- 2024Epitaxial growth of AgCrSe2 thin films by molecular beam epitaxy
- 2024Epitaxial growth of AgCrSe 2 thin films by molecular beam epitaxy
- 2024Large-Scale Epitaxial Integration of Single-Crystalline BiSb Topological Insulator on GaAs (111)Acitations
- 2024Two-dimensional to bulk crossover of the WSe2 electronic band structure
- 2023The electronic structure of intertwined kagome, honeycomb, and triangular sublattices of the intermetallics MCo$_2$Al$_9$
- 2023The electronic structure of intertwined kagome, honeycomb, and triangular sublattices of the intermetallics MCo2Al9 (M = Sr, Ba)citations
- 2023The electronic structure of intertwined kagome, honeycomb, and triangular sublattices of the intermetallics MCo 2 Al 9 (M = Sr, Ba)citations
- 2023Observation of termination-dependent topological connectivity in a magnetic Weyl kagome-latticecitations
- 2023Electronic structure of intertwined kagome, honeycomb, and triangular sublattices of the intermetallics MCo2Al9 (M = Sr, Ba)citations
- 2023Electronic structure of intertwined kagome, honeycomb, and triangular sublattices of the intermetallics MCo2Al9 (M = Sr, Ba)citations
- 2023Electronic structure of intertwined kagome, honeycomb, and triangular sublattices of the intermetallics M Co 2 Al 9 ( M = Sr, Ba)citations
- 2023Observation of Termination-Dependent Topological Connectivity in a Magnetic Weyl Kagome Latticecitations
- 2023Spin-orbit coupled spin-polarised hole gas at the CrSe 2 -terminated surface of AgCrSe 2citations
- 2023Observation of termination-dependent topological connectivity in a magnetic Weyl Kagome latticecitations
- 2023Spin-orbit coupled spin-polarised hole gas at the CrSe2-terminated surface of AgCrSe2citations
- 2023Spin-orbit coupled spin-polarised hole gas at the CrSe2-terminated surface of AgCrSe2citations
- 2023Flat band separation and resilient spin-Berry curvature in bilayer kagome metalscitations
- 2023Flat band separation and robust spin Berry curvature in bilayer kagome metalscitations
- 2023Flat band separation and robust spin Berry curvature in bilayer kagome metalscitations
- 2022Oxygen-Driven Metal–Insulator Transition in SrNbO 3 Thin Films Probed by Infrared Spectroscopycitations
- 2022Oxygen-Driven Metal–Insulator Transition in SrNbO3 Thin Films Probed by Infrared Spectroscopycitations
- 2022Influence of orbital character on the ground state electronic properties in the van Der Waals transition metal iodides VI3 and CrI3citations
- 2022Influence of Orbital Character on the Ground State Electronic Properties in the van Der Waals Transition Metal Iodides VI3 and CrI3citations
- 2022Influence of Orbital Character on the Ground State Electronic Properties in the van Der Waals Transition Metal Iodides VI3 and CrI3citations
- 2022Influence of orbital character on the ground state electronic properties in the van Der Waals transition metal iodides VI 3 and CrI 3citations
- 2021Omnipresence of weak antilocalization (WAL) in Bi2Se3 thin films: A review on its origincitations
- 2021Omnipresence of weak antilocalization (WAL) in Bi 2 Se 3 thin films:a review on its origincitations
- 2021Direct-ARPES and STM investigation of FeSe thin film growth by Nd:YAG lasercitations
- 2021Evidence of robust half-metallicity in strained manganite filmscitations
- 2021Evidence of robust half-metallicity in strained manganite filmscitations
- 2021Omnipresence of weak antilocalization (WAL) in Bi2Se3 thin films : a review on its origincitations
- 2021Direct-ARPES and STM Investigation of FeSe Thin Film Growth by Nd:YAG Lasercitations
- 2020Tuning optical absorption of anatase thin lms across the visible/near-infrared spectral regioncitations
- 2020Analysis of Metal-Insulator Crossover in Strained {SrRuO}3 Thin Films by X-ray Photoelectron Spectroscopycitations
- 2020Direct insight into the band structure of SrNbO 3citations
- 2020Direct insight into the band structure of SrNbO3citations
- 2020Direct insight into the band structure of SrNbO3citations
Places of action
Organizations | Location | People |
---|
article
Oxygen-Driven Metal–Insulator Transition in SrNbO3 Thin Films Probed by Infrared Spectroscopy
Abstract
<p>The occurrence of oxygen-driven metal–insulator-transition (MIT) in SrNbO<sub>3</sub> (SNO) thin films epitaxially grown on (110)-oriented DyScO<sub>3</sub> has been reported. SNO films are fabricated by the pulsed laser deposition technique at different partial O<sub>2</sub> pressure to vary the oxygen content and their structural, optical, and transport properties are probed. SNO unit cell has been found to shrink vertically as the oxygen content increases but keeping the epitaxial matching with the substrate. The results of Fourier-transform infra-red spectroscopy show that highly oxygenated SNO samples (i.e., grown at high oxygen pressure) show distinct optical conductivity behavior with respect to oxygen deficient films, hence demonstrating the insulating character of the formers with respect to those fabricated with lower pressure conditions. Tailoring the optical absorption and conductivity of strontium niobate epitaxial films across the MIT will favor novel applications of this material.</p>