People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Rodriguez, Jean-Baptiste
French National Centre for Scientific Research
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (20/20 displayed)
- 2024III-V/Si epitaxial growth and antiphase domains: a matter of symmetry
- 2024Kinetic Monte Carlo simulation of GaAs growth on (001) Silicon
- 2024Understanding III-V/Si Heteroepitaxy: Experiments and Theory
- 2022Mid-infrared III–V semiconductor lasers epitaxially grown on Si substratescitations
- 2022Mid-infrared III–V semiconductor lasers epitaxially grown on Si substratescitations
- 2022Crystal Phase Control during Epitaxial Hybridization of III‐V Semiconductors with Siliconcitations
- 2022Crystal Phase Control during Epitaxial Hybridization of III‐V Semiconductors with Siliconcitations
- 2021GaSb-based laser diodes grown on MOCVD GaAs-on-Si templatescitations
- 2021GaSb-based laser diodes grown on MOCVD GaAs-on-Si templatescitations
- 2021Crystal Phase Control during Epitaxial Hybridization of III‐V Semiconductors with Siliconcitations
- 2020Zinc-blende group III-V/group IV epitaxy: Importance of the miscutcitations
- 2020Mid-infrared laser diodes epitaxially grown on on-axis (001) siliconcitations
- 2019The Interaction of Extended Defects as the Origin of Step Bunching in Epitaxial III–V Layers on Vicinal Si(001) Substratescitations
- 2018A universal mechanism to describe the III-V on Si growth by Molecular Beam Epitaxy
- 2018A universal mechanism to describe the III-V on Si growth by Molecular Beam Epitaxy
- 2018Anti phase boundary free GaSb layer grown on 300 mm (001)-Si substrate by metal organic chemical vapor depositioncitations
- 2015Terahertz studies of 2D and 3D topological transitions
- 2014Silicon-based photonic integration beyond the telecommunication wavelength rangecitations
- 2014Mid-IR heterogeneous silicon photonicscitations
- 2013Integrated thin-film GaSb-based Fabry-Perot lasers: towards a fully integrated spectrometer on a SOI waveguide circuitcitations
Places of action
Organizations | Location | People |
---|
article
Crystal Phase Control during Epitaxial Hybridization of III‐V Semiconductors with Silicon
Abstract
The formation and propagation of anti-phase boundaries (APBs) in the epitaxial growth of III-V semiconductors on Silicon is still the subject of great debate, despite the impressive number of studies focusing on this topic in the last past decades. The control of the layer phase is of major importance for the future realization of photonic integrated circuits that include efficient light sources or for new nano-electronic devices, for example. Here, it is experimentally demonstrated that the main-phase domain overgrows the anti-phase domains (APDs) because it grows faster. A large-scale analysis of the phase evolution based on reflection high-energy electron diffraction and atomic force microscopy in the case of the molecular beam epitaxy of GaSb on Silicon (001) substrate is presented. The growth rate difference between the two domains is accurately measured and is shown to come from the atomic step distribution at the III-V surface. The influence of the substrate preparation as well as of the growth condition on this distribution is also clarified.