Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Bendova, Maria

  • Google
  • 3
  • 12
  • 18

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2021The Growth, Composition, and Functional Properties of Self‐Organized Nanostructured ZrO2‐Al2O3 Anodic Films for Advanced Dielectric Applications7citations
  • 2020The structural chemistry of titanium alkoxide derivatives with OH-substituted bidentate ligands3citations
  • 2018Porous‐Alumina‐Assisted Growth of Nanostructured Anodic Films on Ti−Nb Alloys8citations

Places of action

Chart of shared publication
Kolibalova, Eva
1 / 2 shared
Prasek, Jan
1 / 1 shared
Michalicka, Jan
1 / 9 shared
Sepúlveda, Marcela
1 / 2 shared
Kamnev, Kirill
1 / 4 shared
Mozalev, Alexander
2 / 9 shared
Czakler, Matthias
1 / 1 shared
Visinescu, Claudia
1 / 1 shared
Schubert, Ulrich
1 / 4 shared
Maurer, Christian
1 / 1 shared
Kolar, Jakub
1 / 1 shared
Gispert Guirado, Francesc
1 / 1 shared
Chart of publication period
2021
2020
2018

Co-Authors (by relevance)

  • Kolibalova, Eva
  • Prasek, Jan
  • Michalicka, Jan
  • Sepúlveda, Marcela
  • Kamnev, Kirill
  • Mozalev, Alexander
  • Czakler, Matthias
  • Visinescu, Claudia
  • Schubert, Ulrich
  • Maurer, Christian
  • Kolar, Jakub
  • Gispert Guirado, Francesc
OrganizationsLocationPeople

article

The Growth, Composition, and Functional Properties of Self‐Organized Nanostructured ZrO2‐Al2O3 Anodic Films for Advanced Dielectric Applications

  • Kolibalova, Eva
  • Prasek, Jan
  • Michalicka, Jan
  • Bendova, Maria
  • Sepúlveda, Marcela
  • Kamnev, Kirill
  • Mozalev, Alexander
Abstract

<jats:title>Abstract</jats:title><jats:p>An aluminum‐on‐zirconium bilayer is anodized in oxalic acid solution to transform the Al layer into porous anodic alumina (PAA); this is followed by the PAA‐assisted re‐anodizing of the Zr underlayer at voltages 40–280 V. The process results in an array of amorphous ZrO<jats:sub>2</jats:sub> nanocolumns, 45–330 nm long, partly filling the PAA pores and anchored to a continuous bottom oxide layer under the pores, 20–130 nm thick, comprising a ZrO<jats:sub>1.8</jats:sub> spongelike sublayer superimposed on a ZrO<jats:sub>1.5</jats:sub> compact sublayer. The thicknesses of the nanostructured and bottom oxides increase linearly with re‐anodizing voltage, disclosing a low film formation ratio of 1.65 nm V<jats:sup>−1</jats:sup>, which is impossible with anodic ZrO<jats:sub>2</jats:sub>. The amorphous ZrO<jats:sub>2</jats:sub> nanocolumns embedded in the highly resistive amorphous PAA matrix combined with the laminated bottom oxide reveal a nearly ideal dielectric performance in a wide frequency range (10<jats:sup>−4</jats:sup>–10<jats:sup>4</jats:sup> Hz) complemented by the low leakage currents and high breakdown voltages (up to 280 V). The film permittivity may be tuned, from 11 to 20, by combining the anodizing and pore‐widening techniques. The advantageous architecture, fabrication approach, and functional properties of the films allow the design of a prototype of an emerging hybrid polymer electrolytic microcapacitor for on‐chip integration.</jats:p>

Topics
  • porous
  • impedance spectroscopy
  • pore
  • polymer
  • amorphous
  • aluminium
  • zirconium