People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
De Groot, Cornelis
University of Southampton
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (41/41 displayed)
- 2022Vertical and Lateral Electrodeposition of 2D Material Heterostructures
- 20222D material based optoelectronics by electroplating
- 2022Room temperature phase transition of W-doped VO2 by atomic layer deposition on 200 mm Si wafers and flexible substratescitations
- 2021Low pressure CVD of GeE (E = Te, Se, S) thin films from alkylgermanium chalcogenolate precursors and effect of the deposition temperature on the thermoelectric performance of GeTecitations
- 2021Low temperature CVD of thermoelectric SnTe thin films from the single source precursor, [nBu3Sn(TenBu)]citations
- 2021Tungsten disulfide thin films via electrodeposition from a single source precursorcitations
- 2021Lateral growth of MoS2 2D material semiconductors over an insulator via electrodepositioncitations
- 2020Large-area electrodeposition of few-layer MoS2 on graphene for 2D material heterostructurescitations
- 2020Thermoelectric properties of bismuth telluride thin films electrodeposited from a non-aqueous solutioncitations
- 2020Selective chemical vapor deposition approach for Sb2Te3 thin film micro-thermoelectric generatorscitations
- 2020Improved thermoelectric performance of Bi2Se3 alloyed Bi2Te3 thin films via low pressure chemical vapour depositioncitations
- 2020Electrodeposition of MoS2 from dichloromethanecitations
- 2019Electrodeposition of bismuth telluride from a weakly coordinating, non-aqueous solutioncitations
- 2018Towards a 3D GeSbTe phase change memory with integrated selector by non-aqueous electrodepositioncitations
- 2018Electrodeposition of a functional solid state memory material – germanium antimony telluride from a non-aqueous plating bathcitations
- 2017Selection by current compliance of negative and positive bipolar resistive switching behaviour in ZrO2−x/ZrO2 bilayer memorycitations
- 2016Forming-free resistive switching of tunable ZnO films grown by atomic layer depositioncitations
- 2016Nanoscale arrays of antimony telluride single crystals by selective chemical vapor depositioncitations
- 2015Chemical vapour deposition of antimony chalcogenides with positional and orientational control: precursor design and substrate selectivitycitations
- 2015Non-aqueous electrodeposition of functional semiconducting metal chalcogenides: Ge2Sb2Te5phase change memorycitations
- 2015Phase-change memory properties of electrodeposited Ge-Sb-Te thin filmcitations
- 2014The effect of atomic layer deposition temperature on switching properties of HfOx resistive RAM devicescitations
- 2013Non-aqueous electrodeposition of metals and metalloids from halometallate saltscitations
- 2013Low pressure chemical vapour deposition of crystalline Ga2Te3 and Ga2Se3 thin films from single source precursors using telluroether and selenoether complexescitations
- 2012Highly selective chemical vapor deposition of tin diselenide thin films onto patterned substrates via single source diselenoether precursorscitations
- 2012Low power hydrogen gas sensors using electrodeposited PdNi-Si Schottky diodescitations
- 2011Metal catalyst-free growth of carbon nanotubes and their application in field effect transitors
- 2011Metal-catalyst-free growth of carbon nanotubes and their application in field-effect transistors
- 2010Fabrication and simulation of nanostructures for domain wall magnetoresistance studies on nickelcitations
- 2010Chemical Vapour Deposition of CNTs Using Structural Nanoparticle Catalysts
- 2009Growth of single-walled carbon nanotubes using germanium nanocrystals formed by implantationcitations
- 2009Inhomogeneous Ni/Ge Schottky barriers due to variation in Fermi-level pinning
- 2008Numerical investigation of domain walls in constrained geometriescitations
- 2008Fabrication of Nano-Structured Gold Arrays by Guided Self-assembly for Plasmonics
- 2007A study on Ge based spin-LED for spintronic applications.
- 2006The structural and electrical properties of thermally grown TiO2 thin films
- 2006Enhancement of resistivity of Czochralski silicon by deep level manganese dopingcitations
- 2006Orientation and symmetry control of inverse sphere magnetic nanoarrays by guided self-assemblycitations
- 2005Shape-induced anisotropy in antidot arrays from self-assembled templatescitations
- 2005Metal catalyst-free low-temperature carbon nanotube growth on SiGe islandscitations
- 2005Catalyst free low temperature direct growth of carbon nanotubes on SiGe islands and Ge quantum dots
Places of action
Organizations | Location | People |
---|
article
Lateral growth of MoS2 2D material semiconductors over an insulator via electrodeposition
Abstract
<p>Developing novel techniques for depositing transition metal dichalcogenides is crucial for the industrial adoption of 2D materials in optoelectronics. In this work, the lateral growth of molybdenum disulfide (MoS<sub>2</sub>) over an insulating surface is demonstrated using electrochemical deposition. By fabricating a new type of microelectrodes, MoS<sub>2</sub> 2D films grown from TiN electrodes across opposite sides are connected over an insulating substrate, hence, forming a lateral device structure through only one lithography and deposition step. Using a variety of characterization techniques, the growth rate of MoS<sub>2</sub> is shown to be highly anisotropic with lateral to vertical growth ratios exceeding 20-fold. Electronic and photo-response measurements on the device structures demonstrate that the electrodeposited MoS<sub>2</sub> layers behave like semiconductors, confirming their potential for photodetection applications. This lateral growth technique paves the way toward room temperature, scalable, and site-selective production of various transition metal dichalcogenides and their lateral heterostructures for 2D materials-based fabricated devices.</p>