People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Boehme, Simon C.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (17/17 displayed)
- 2024Size- and temperature-dependent lattice anisotropy and structural distortion in CsPbBr 3 quantum dots by reciprocal space X-ray total scattering analysiscitations
- 2024Quantifying the Size‐Dependent Exciton‐Phonon Coupling Strength in Single Lead‐Halide Perovskite Quantum Dotscitations
- 2024Quantifying the size-ddependent exciton-phonon coupling strength in single lead-halide perovskite quantum dotscitations
- 2024Quantifying Förster resonance energy transfer from single perovskite quantum dots to organic dyescitations
- 2024Designer phospholipid capping ligands for soft metal halide nanocrystalscitations
- 2023Strongly Confined CsPbBr3 Quantum Dots as Quantum Emitters and Building Blocks for Rhombic Superlatticescitations
- 2023Strongly Confined CsPbBr3 Quantum Dots as Quantum Emitters and Building Blocks for Rhombic Superlattices.
- 2023Size‐ and Temperature‐Dependent Lattice Anisotropy and Structural Distortion in CsPbBr<sub>3</sub> Quantum Dots by Reciprocal Space X‐ray Total Scattering Analysiscitations
- 2023Strongly confined CsPbBr 3 quantum dots as quantum emitters and building blocks for rhombic superlatticescitations
- 2023Designer Phospholipid Capping Ligands for Soft Metal Halide Nanocrystalscitations
- 2021Correlating Ultrafast Dynamics, Liquid Crystalline Phases, and Ambipolar Transport in Fluorinated Benzothiadiazole Dyescitations
- 2021Pressure-induced perovskite-to-non-perovskite phase transition in CsPbBr 3citations
- 2021Pressure‐Induced Perovskite‐to‐non‐Perovskite Phase Transition in CsPbBr<sub>3</sub>citations
- 2021Synthesis and characterization of the ternary nitride semiconductor Zn 2 VN 3 : theoretical prediction, combinatorial screening, and epitaxial stabilizationcitations
- 2021Hybrid 0D antimony halides as air-stable luminophores for high-spatial-resolution remote thermographycitations
- 2018Extraordinary Interfacial Stitching between Single All-Inorganic Perovskite Nanocrystalscitations
- 2018Extraordinary Interfacial Stitching between Single All-Inorganic Perovskite Nanocrystalscitations
Places of action
Organizations | Location | People |
---|
article
Correlating Ultrafast Dynamics, Liquid Crystalline Phases, and Ambipolar Transport in Fluorinated Benzothiadiazole Dyes
Abstract
<p>A key challenge in the field of organic electronics is predicting how chemical structure at the molecular scale determines nature and dynamics of excited states, as well as the macroscopic optoelectronic properties in thin film. Here, the donor–acceptor dyes 4,7-bis[5-[4-(3-ethylheptyl)-2,3-difluorophenyl]-2-thienyl]-2,1,3-benzothiadiazole (2,3-FFPTB) and 4,7-bis[5-[4-(3-ethylheptyl)-2,6-difluorophenyl]-2-thienyl]-2,1,3-benzothiadiazole (2,6-FFPTB) are synthesized, which only differ in the position of one fluorine substitution. It is observed that this variation in chemical structure does not influence the energetic position of the molecular frontier orbitals or the ultrafast dynamics on the FFPTB backbone. However, it does result in differences at the macroscale, specifically regarding structural and electrical properties of the FFPTB films. Both FFPTB molecules form crystalline films at room temperature, whereas 2,3-FFPTB has two ordered smectic phases at elevated temperatures, and 2,6-FFPTB does not display any liquid crystalline phases. It is demonstrated that the altered location of the fluorine substitution allows to control the electrostatic potential along the molecular backbone without impacting molecular energetics or ultrafast dynamics. Such a design strategy succeeds in controlling molecular interactions in liquid crystalline phase, and it is shown that the associated molecular order, or rather disorder, can be exploited to achieve ambipolar transport in FFPTB films.</p>