Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Kennis, John

  • Google
  • 1
  • 8
  • 2

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2021Correlating Ultrafast Dynamics, Liquid Crystalline Phases, and Ambipolar Transport in Fluorinated Benzothiadiazole Dyes2citations

Places of action

Chart of shared publication
Untenecker, Harald
1 / 2 shared
Van Stokkum, Ivo H. M.
1 / 2 shared
Frick, Achidi
1 / 3 shared
Yimga, Nadine Tchamba
1 / 1 shared
Gunst, Susann
1 / 2 shared
Kirsch, Peer
1 / 3 shared
Boehme, Simon C.
1 / 17 shared
Von Hauff, Elizabeth
1 / 27 shared
Chart of publication period
2021

Co-Authors (by relevance)

  • Untenecker, Harald
  • Van Stokkum, Ivo H. M.
  • Frick, Achidi
  • Yimga, Nadine Tchamba
  • Gunst, Susann
  • Kirsch, Peer
  • Boehme, Simon C.
  • Von Hauff, Elizabeth
OrganizationsLocationPeople

article

Correlating Ultrafast Dynamics, Liquid Crystalline Phases, and Ambipolar Transport in Fluorinated Benzothiadiazole Dyes

  • Untenecker, Harald
  • Kennis, John
  • Van Stokkum, Ivo H. M.
  • Frick, Achidi
  • Yimga, Nadine Tchamba
  • Gunst, Susann
  • Kirsch, Peer
  • Boehme, Simon C.
  • Von Hauff, Elizabeth
Abstract

<p>A key challenge in the field of organic electronics is predicting how chemical structure at the molecular scale determines nature and dynamics of excited states, as well as the macroscopic optoelectronic properties in thin film. Here, the donor–acceptor dyes 4,7-bis[5-[4-(3-ethylheptyl)-2,3-difluorophenyl]-2-thienyl]-2,1,3-benzothiadiazole (2,3-FFPTB) and 4,7-bis[5-[4-(3-ethylheptyl)-2,6-difluorophenyl]-2-thienyl]-2,1,3-benzothiadiazole (2,6-FFPTB) are synthesized, which only differ in the position of one fluorine substitution. It is observed that this variation in chemical structure does not influence the energetic position of the molecular frontier orbitals or the ultrafast dynamics on the FFPTB backbone. However, it does result in differences at the macroscale, specifically regarding structural and electrical properties of the FFPTB films. Both FFPTB molecules form crystalline films at room temperature, whereas 2,3-FFPTB has two ordered smectic phases at elevated temperatures, and 2,6-FFPTB does not display any liquid crystalline phases. It is demonstrated that the altered location of the fluorine substitution allows to control the electrostatic potential along the molecular backbone without impacting molecular energetics or ultrafast dynamics. Such a design strategy succeeds in controlling molecular interactions in liquid crystalline phase, and it is shown that the associated molecular order, or rather disorder, can be exploited to achieve ambipolar transport in FFPTB films.</p>

Topics
  • impedance spectroscopy
  • thin film
  • crystalline phase