People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Barabash, Anastasiia
Friedrich-Alexander-Universität Erlangen-Nürnberg
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (8/8 displayed)
- 2024Unveiling the Role of BODIPY Dyes as Small‐Molecule Hole Transport Material in Inverted Planar Perovskite Solar Cellscitations
- 2023Enhancing Planar Inverted Perovskite Solar Cells with Innovative Dumbbell‐Shaped HTMs: A Study of Hexabenzocoronene and Pyrene‐BODIPY‐Triarylamine Derivativescitations
- 2022Highly Stable Lasing from Solution‐Epitaxially Grown Formamidinium‐Lead‐Bromide Micro‐Resonatorscitations
- 2022Shape‐Controlled Solution‐Epitaxial Perovskite Micro‐Crystal Lasers Rivaling Vapor Deposited Onescitations
- 2022Ligand Tuning of Localized Surface Plasmon Resonances in Antimony-Doped Tin Oxide Nanocrystalscitations
- 2022Laser Cutting of Metal‐Halide‐Perovskite Wafers for X‐Ray Detector Integrationcitations
- 2021Characterization of Aerosol Deposited Cesium Lead Tribromide Perovskite Films on Interdigited ITO Electrodescitations
- 2021High‐Throughput Robotic Synthesis and Photoluminescence Characterization of Aqueous Multinary Copper–Silver Indium Chalcogenide Quantum Dotscitations
Places of action
Organizations | Location | People |
---|
article
Characterization of Aerosol Deposited Cesium Lead Tribromide Perovskite Films on Interdigited ITO Electrodes
Abstract
<jats:title>Abstract</jats:title><jats:p>Aerosol deposition (AD) is a promising additive manufacturing method to fabricate low‐cost, scalable films at room temperature, but has not been considered for semiconductor processing, so far. The successful preparation of cesium lead tribromide (CsPbBr<jats:sub>3</jats:sub>) perovskite films on interdigitated indium tin oxide (ITO) electrodes by means of AD is reported here. The 20–35 µm thick layers are dense and have good adhesion to the substrate. The orthorhombic <jats:italic>Pnma</jats:italic> crystal structure of the precursor powder was retained during the deposition process with no signs of defect formation. The formation of electronic defects by photoluminescence spectroscopy is investigated and found slightly increased carrier recombination from defect sites for AD films compared to the powder. A nonuniform defect distribution across the layer, presumably induced by the impact of the semiconducting grains on the hard substrate surface, is revealed. The opto‐electronic properties of AD processed semiconducting films is further tested by electrical measurements and confirmed good semiconducting properties and high responsivity for the films. These results demonstrate that AD processing of metal halide perovskites is possible for opto‐electronic device manufacturing on 3D surfaces. It is believed that this work paves the way for the fabrication of previously unimaginable opto‐electronic devices by additive manufacturing.</jats:p>