People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Martins, Jorge
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (10/10 displayed)
- 2022Formulation and Characterization of a Composite Coating Formulation Based on Acrylic Foam and Cork Granules
- 2022Foldable and Recyclable Iontronic Cellulose Nanopaper for Low-Power Paper Electronicscitations
- 2022Foldable and Recyclable Iontronic Cellulose Nanopaper for Low-Power Paper Electronicscitations
- 2021Handwritten and Sustainable Electronic Logic Circuits with Fully Printed Paper Transistorscitations
- 2021Towards Sustainable Crossbar Artificial Synapses with Zinc-Tin Oxidecitations
- 2021Towards Sustainable Crossbar Artificial Synapses with Zinc-Tin Oxidecitations
- 20202D Resistive Switching Based on Amorphous Zinc–Tin Oxide Schottky Diodescitations
- 2020Piezoelectricity Enhancement of Nanogenerators Based on PDMS and ZnSnO3 Nanowires through Microstructurationcitations
- 2020Rail-to-Rail Timing Signals Generation Using InGaZnO TFTs for Flexible X-Ray Detectorcitations
- 2016Improving positive and negative bias illumination stress stability in parylene passivated IGZO transistorscitations
Places of action
Organizations | Location | People |
---|
article
2D Resistive Switching Based on Amorphous Zinc–Tin Oxide Schottky Diodes
Abstract
<p>A room-temperature-processed resistive switching Schottky diode that can be operated in two distinct modes, depending solely on the choice of device initialization mode, is presented. Electroforming in the diode's reverse polarity leads to an abrupt filamentary switching with inherently long data retention at the expense of rectification. After this electroforming process, the devices may work in either a bipolar or unipolar manner with a resistance window of at least two orders of magnitude. Device initialization in the forward direction shows a smooth area-dependent switching over two orders of magnitude, which conserves the current rectification and allows for analog control over the resistance states (dependence of device history and applied voltage stimuli). This secondary mechanism involves ion exchange or charge trapping at the Schottky interface without a contribution from the bulk (hence, it is termed 2D), which is reported for the first time for an amorphous oxide semiconductor switching matrix.</p>