People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Bobbert, Peter A.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (4/4 displayed)
- 2021Dopant Network Processing Units: Towards Efficient Neural-network Emulators with High-capacity Nanoelectronic Nodescitations
- 2019Short-channel vertical organic field-effect transistors with high on/off ratioscitations
- 2018Simulating phase separation during spin coating of a polymer–fullerene blendcitations
- 2018Simulating phase separation during spin coating of a polymer–fullerene blend:a joint computational and experimental investigationcitations
Places of action
Organizations | Location | People |
---|
article
Short-channel vertical organic field-effect transistors with high on/off ratios
Abstract
A unique vertical organic field-effect transistor structure in which highly doped silicon nanopillars are utilized as a gate electrode is demonstrated. An additional dielectric layer, partly covering the source, suppresses bulk conduction and lowers the OFF current. Using a semiconducting polymer as active channel material, short-channel (100 nm) transistors with ON/OFF current ratios up to 10 6 are realized. The electronic behavior is explained using space-charge and contact-limited current models and numerical simulations. The current density and switching speed of the devices are in the order of 0.1 A cm −2 and 0.1 MHz, respectively, at biases of only a few volts. These characteristics make the devices very promising for applications where large current densities, high switching speeds, and high ON/OFF ratios are required.