Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Favaloro, T.

  • Google
  • 1
  • 12
  • 5

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2019High Thermoelectric Power Factor and ZT in TbAs:InGaAs Epitaxial Nanocomposite Material5citations

Places of action

Chart of shared publication
Zide, J. M. O.
1 / 1 shared
Bahk, J.-H.
1 / 1 shared
Bowers, J. E.
1 / 1 shared
Shakouri, A.
1 / 3 shared
Seol, Jae Hun
1 / 5 shared
Tew, B. E.
1 / 1 shared
Vempati, P.
1 / 1 shared
Clinger, L. E.
1 / 1 shared
Feser, J. P.
1 / 1 shared
Bomberger, C. C.
1 / 1 shared
Halaszynski, N. I.
1 / 1 shared
Majumdar, A.
1 / 3 shared
Chart of publication period
2019

Co-Authors (by relevance)

  • Zide, J. M. O.
  • Bahk, J.-H.
  • Bowers, J. E.
  • Shakouri, A.
  • Seol, Jae Hun
  • Tew, B. E.
  • Vempati, P.
  • Clinger, L. E.
  • Feser, J. P.
  • Bomberger, C. C.
  • Halaszynski, N. I.
  • Majumdar, A.
OrganizationsLocationPeople

article

High Thermoelectric Power Factor and ZT in TbAs:InGaAs Epitaxial Nanocomposite Material

  • Zide, J. M. O.
  • Bahk, J.-H.
  • Bowers, J. E.
  • Shakouri, A.
  • Seol, Jae Hun
  • Tew, B. E.
  • Vempati, P.
  • Clinger, L. E.
  • Feser, J. P.
  • Bomberger, C. C.
  • Halaszynski, N. I.
  • Favaloro, T.
  • Majumdar, A.
Abstract

Lanthanide monopnictide (Ln-V) nanoparticles embedded within III–V semiconductors, specifically in In 0.53 Ga 0.47 As, are interesting for thermoelectric applications. The electrical conductivity, Seebeck coefficient, and power factor of co-deposited TbAs:InGaAs over the temperature range of 300–700 K are reported. Using Boltzmann transport theory, it is shown that TbAs nanoparticles in InGaAs matrix give rise to an improved Seebeck coefficient due to an increase in scattering, such as ionized impurity scattering. TbAs nanoparticles act as electron donors in the InGaAs matrix while having minimal effects on electron mobility, and maintain high electrical conductivity. There is further evidence that TbAs nanoparticles act as energy dependent electron scattering sites, contributing to an increased Seebeck coefficient at high temperature. These results show that TbAs:InGaAs nanocomposite thinfilms containing low concentrations, specifically 0.78% TbAs:InGaAs, display high electrical conductivity, reduced thermal conductivity, improved Seebeck coefficient, and demonstrated ZT of power factors as high as 7.1 × 10 −3 W K −2 m −1 and ZT as high as 1.6 at 650 K.

Topics
  • nanoparticle
  • nanocomposite
  • impedance spectroscopy
  • mobility
  • theory
  • semiconductor
  • thermal conductivity
  • electrical conductivity
  • Lanthanide