Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Mader, Lothar

  • Google
  • 7
  • 33
  • 86

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (7/7 displayed)

  • 2020Development of an active high-density transverse intrafascicular micro-electrode probe19citations
  • 2019FITEP : a Flexible Implantable Thin Electronic Package platform for long term implantation applications, based on polymer and ceramic ALD multilayerscitations
  • 2019FITEP : a Flexible Implantable Thin Electronic Package platform for long term implantation applications, based on polymer and ceramic ALD multilayerscitations
  • 2019Ultra-long-term reliable encapsulation using an atomic layer deposited Hfo2/Al2o3/Hfo2 triple-interlayer for biomedical implants34citations
  • 2019FITEP: a Flexible Implantable Thin Electronic Package platform for long term implantation applications, based on polymer and ceramic ALD multilayerscitations
  • 20183D multifunctional composites based on large-area stretchable circuit with thermoforming technology33citations
  • 2017Accelerated hermeticity testing of biocompatible moisture barriers used for encapsulation of implantable medical devicescitations

Places of action

Chart of shared publication
Vandecasteele, Bjorn
5 / 10 shared
Maghari, Nima
4 / 6 shared
Verplancke, Rik
4 / 13 shared
Cuypers, Dieter
4 / 9 shared
Vanhaverbeke, Celine
5 / 5 shared
Ballini, Marco
4 / 6 shared
Cauwe, Maarten
6 / 13 shared
Patrick, Erin
4 / 6 shared
Braeken, Dries
4 / 7 shared
Goikoetxea, Erkuden
1 / 1 shared
Ocallaghan, John
4 / 7 shared
Otto, Kevin
1 / 2 shared
Op De Beeck, Maaike
6 / 15 shared
Schaubroeck, David
6 / 16 shared
Kundu, Aritra
4 / 6 shared
Bashirullah, Rizwan
4 / 6 shared
Fahmy, Ahmed
3 / 5 shared
Andrei, Alexandru
3 / 6 shared
Firrincieli, Andrea
3 / 5 shared
De Baets, Johan
1 / 3 shared
Li, Changzheng
1 / 2 shared
Baets, Johan De
2 / 5 shared
Yang, Yang
2 / 26 shared
Kaufmann, Markus
1 / 6 shared
Martens, Tom
1 / 5 shared
Van Put, Steven
1 / 6 shared
De Vriese, Linde
1 / 1 shared
Vervust, Thomas
1 / 6 shared
Degrendele, Lieven
1 / 1 shared
Sekitani, Tsuyoshi
1 / 2 shared
Dunphy, Sheila
1 / 4 shared
Vanfleteren, Jan
1 / 24 shared
Dhaenens, Kristof
1 / 5 shared
Chart of publication period
2020
2019
2018
2017

Co-Authors (by relevance)

  • Vandecasteele, Bjorn
  • Maghari, Nima
  • Verplancke, Rik
  • Cuypers, Dieter
  • Vanhaverbeke, Celine
  • Ballini, Marco
  • Cauwe, Maarten
  • Patrick, Erin
  • Braeken, Dries
  • Goikoetxea, Erkuden
  • Ocallaghan, John
  • Otto, Kevin
  • Op De Beeck, Maaike
  • Schaubroeck, David
  • Kundu, Aritra
  • Bashirullah, Rizwan
  • Fahmy, Ahmed
  • Andrei, Alexandru
  • Firrincieli, Andrea
  • De Baets, Johan
  • Li, Changzheng
  • Baets, Johan De
  • Yang, Yang
  • Kaufmann, Markus
  • Martens, Tom
  • Van Put, Steven
  • De Vriese, Linde
  • Vervust, Thomas
  • Degrendele, Lieven
  • Sekitani, Tsuyoshi
  • Dunphy, Sheila
  • Vanfleteren, Jan
  • Dhaenens, Kristof
OrganizationsLocationPeople

article

3D multifunctional composites based on large-area stretchable circuit with thermoforming technology

  • Vandecasteele, Bjorn
  • Kaufmann, Markus
  • Martens, Tom
  • Van Put, Steven
  • Yang, Yang
  • De Vriese, Linde
  • Vervust, Thomas
  • Degrendele, Lieven
  • Sekitani, Tsuyoshi
  • Dunphy, Sheila
  • Vanfleteren, Jan
  • Dhaenens, Kristof
  • Mader, Lothar
Abstract

Fiber-reinforced polymer composites with integrated intelligence, such as sensors, actuators, and communication capabilities, are desirable as infrastructures for the next generation of "internet of things." However, the shape mismatch between the 3D composites and a planar electronic circuit causes difficulties in integrating electronic circuit-based intelligences. Here, an easily scalable approach, by incorporating a large-area stretchable circuit with thermoforming technology, to fabricate 3D multifunctional composites is reported. The stretchable circuit is first fabricated on a rigid and planar carrier board, then transferred and sandwiched between thermoplastic composites through lamination processes. A thermoforming step shapes the sandwiched and planar structure by heating up the encapsulating polymers beyond their glass transition temperature and pushing them and the circuit against a mold. Using the proposed process, large-sized composites with integrated matrices of light-emitting diodes (LEDs) and capacitive sensors are successfully fabricated. A giant (with a size of 0.5 m x 1 m) seven-segment display is assembled using the fabricated composites with integrated LEDs and capacitive sensors to display 128 symbols. The results demonstrate the potential of the proposed approach as a facile, reproducible, and scalable process for creating 3D multifunctional composites.

Topics
  • impedance spectroscopy
  • glass
  • glass
  • composite
  • glass transition temperature
  • thermoplastic