People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Nikolka, Mark
University of Cambridge
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (11/11 displayed)
- 2023Effects of Processing-Induced Contamination on Organic Electronic Devices.
- 2023Effects of processing‐induced contamination on organic electronic devicescitations
- 2020Anisotropy of Charge Transport in a Uniaxially Aligned Fused Electron-Deficient Polymer Processed by Solution Shear Coating.
- 2020Linking Glass-Transition Behavior to Photophysical and Charge Transport Properties of High-Mobility Conjugated Polymers
- 2019High-mobility, trap-free charge transport in conjugated polymer diodescitations
- 2017High operational and environmental stability of high-mobility conjugated polymer field-effect transistors achieved through the use of molecular additivescitations
- 2017High operational and environmental stability of high-mobility conjugated polymer field-effect transistors through the use of molecular additives.
- 2017Correlation of Disorder and Charge Transport in a Range of Indacenodithiophene-Based Semiconducting Polymerscitations
- 2016High operational and environmental stability of high-mobility conjugated polymer field-effect transistors through the use of molecular additivescitations
- 20162D coherent charge transport in highly ordered conducting polymers doped by solid state diffusion.
- 2014Approaching disorder-free transport in high-mobility conjugated polymers.
Places of action
Organizations | Location | People |
---|
article
Correlation of Disorder and Charge Transport in a Range of Indacenodithiophene-Based Semiconducting Polymers
Abstract
Over the past 25 years, various design motifs have emerged for the development of organic semiconductors for demanding applications in flexible organic light emitting diode display backplanes or even printed organic logic. Due to their large area uniformity paired with high charge carrier mobilities, conjugated polymers have attracted increasing attention in this respect. However, the performances delivered by current generation conjugated polymers still fall short of many industrial requirements demanding devices with ideal transistor characteristics and higher mobilities. The discovery of conjugated polymers with low energetic disorder, such as the indacenodithiophene-based polymer indacenodithiophene-co-benzothiadiazole, represent an exciting opportunity to breach this chasm if these materials can be further optimized while maintaining their low disorder. Here, it is shown how both the charge transport properties as well as the energetic disorder are affected by tuning the molecular structure of a large range of indacenodithiophene-based semiconducting polymer derivatives. This study allows to understand better the interplay between molecular design and structure of the polymer backbone and the degree of energetic disorder that governs the charge transport properties in thin polymer films.