People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Feldmann, Sascha
École Polytechnique Fédérale de Lausanne
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (19/19 displayed)
- 2024Metal doping of halide perovskite nanocrystals under ambient conditions
- 2024From Chalcogen Bonding to S–π Interactions in Hybrid Perovskite Photovoltaicscitations
- 2023Materials for chiral light controlcitations
- 2023Bright circularly polarized photoluminescence in chiral layered hybrid lead-halide perovskitescitations
- 2023Bright circularly polarized photoluminescence in chiral layered hybrid lead-halide perovskitescitations
- 2023Fundamentals, Advances, and Artifacts in Circularly Polarized Luminescence (CPL) Spectroscopycitations
- 2023Local symmetry breaking drives picosecond spin domain formation in polycrystalline halide perovskite films.
- 2022A mechanistic study of the dopant-induced breakdown in halide perovskites using solid state energy storage devices.
- 2022Luminescence Enhancement Due to Symmetry Breaking in Doped Halide Perovskite Nanocrystals.citations
- 2021Impact of Orientational Glass Formation and Local Strain on Photo-Induced Halide Segregation in Hybrid Metal-Halide Perovskites
- 2021Impact of Orientational Glass Formation and Local Strain on Photo-Induced Halide Segregation in Hybrid Metal-Halide Perovskitescitations
- 2021Impact of Orientational Glass Formation and Local Strain on Photo-Induced Halide Segregation in Hybrid Metal-Halide Perovskitescitations
- 2021Manganese doping for enhanced magnetic brightening and circular polarization control of dark excitons in paramagnetic layered hybrid metal-halide perovskitescitations
- 2021Impact of Orientational Glass Formation and Local Strain on Photo-Induced Halide Segregation in Hybrid Metal-Halide Perovskites.
- 2021Manganese doping for enhanced magnetic brightening and circular polarization control of dark excitons in paramagnetic layered hybrid metal-halide perovskites.
- 2021Tailored Local Bandgap Modulation as a Strategy to Maximize Luminescence Yields in Mixed‐Halide Perovskites
- 2020Photodoping through local charge carrier accumulation in alloyed hybrid perovskites for highly efficient luminescencecitations
- 2020How Exciton Interactions Control Spin-Depolarization in Layered Hybrid Perovskitescitations
- 2020Control of crystal symmetry breaking with halogen substituted benzylammonium in layered hybrid metal-halide perovskitescitations
Places of action
Organizations | Location | People |
---|
article
From Chalcogen Bonding to S–π Interactions in Hybrid Perovskite Photovoltaics
Abstract
The stability of hybrid organic–inorganic halide perovskite semiconductors remains a significant obstacle to their application in photovoltaics. To this end, the use of low‐dimensional (LD) perovskites, which incorporate hydrophobic organic moieties, provides an effective strategy to improve their stability, yet often at the expense of their performance. To address this limitation, supramolecular engineering of noncovalent interactions between organic and inorganic components has shown potential by relying on hydrogen bonding and conventional van der Waals interactions. Here, the capacity to access novel LD perovskite structures that uniquely assemble through unorthodox S‐mediated interactions is explored by incorporating benzothiadiazole‐based moieties. The formation of S‐mediated LD structures is demonstrated, including one‐dimensional (1D) and layered two‐dimensional (2D) perovskite phases assembled via chalcogen bonding and S–π interactions, through a combination of techniques, such as single crystal and thin film X‐ray diffraction, as well as solid‐state NMR spectroscopy, complemented by molecular dynamics simulations, density functional theory calculations, and optoelectronic characterization, revealing superior conductivities of S‐mediated LD perovskites. The resulting materials are applied in n‐i‐p and p‐i‐n perovskite solar cells, demonstrating enhancements in performance and operational stability that reveal a versatile supramolecular strategy in photovoltaics.