People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Paetzold, Ulrich Wilhelm
Karlsruhe Institute of Technology
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (19/19 displayed)
- 2024Hybrid Two‐Step Inkjet‐Printed Perovskite Solar Cellscitations
- 2024Modeling and Fundamental Dynamics of Vacuum, Gas, and Antisolvent Quenching for Scalable Perovskite Processescitations
- 2024Energy Yield Modeling of Perovskite–Silicon Tandem Photovoltaics: Degradation and Total Lifetime Energy Yieldcitations
- 2023Bright circularly polarized photoluminescence in chiral layered hybrid lead-halide perovskitescitations
- 2023Evaporated Self‐Assembled Monolayer Hole Transport Layers: Lossless Interfaces in <i>p‐i‐n</i> Perovskite Solar Cellscitations
- 2023Decoupling Bimolecular Recombination Mechanisms in Perovskite Thin Films Using Photoluminescence Quantum Yield
- 2023Surface Saturation Current Densities of Perovskite Thin Films from Suns-Photoluminescence Quantum Yield Measurements
- 2023Intensity Dependent Photoluminescence Imaging for In‐Line Quality Control of Perovskite Thin Film Processingcitations
- 2022Energy Yield Modeling of Bifacial All‐Perovskite Two‐Terminal Tandem Photovoltaicscitations
- 2022Mitigation of Open‐Circuit Voltage Losses in Perovskite Solar Cells Processed over Micrometer‐Sized‐Textured Si Substratescitations
- 2021A Self‐Assembly Method for Tunable and Scalable Nano‐Stamps: A Versatile Approach for Imprinting Nanostructurescitations
- 2021Analytical Study of Solution-Processed Tin Oxide as Electron Transport Layer in Printed Perovskite Solar Cellscitations
- 2021From Groundwork to Efficient Solar Cells: On the Importance of the Substrate Material in Co‐Evaporated Perovskite Solar Cellscitations
- 2021Exciton versus free carrier emission: Implications for photoluminescence efficiency and amplified spontaneous emission thresholds in quasi-2D and 3D perovskitescitations
- 2020Chemical vapor deposited polymer layer for efficient passivation of planar perovskite solar cellscitations
- 2019Continuous wave amplified spontaneous emission in phase-stable lead halide perovskitescitations
- 2019Vacuum‐Assisted Growth of Low‐Bandgap Thin Films (FA$_{0.8}$MA$_{0.2}$Sn$_{0.5}$Pb$_{0.5}$I$_{3}$) for All‐Perovskite Tandem Solar Cellscitations
- 2019Inkjet‐Printed Micrometer‐Thick Perovskite Solar Cells with Large Columnar Grainscitations
- 2017All-Angle Invisibility Cloaking of Contact Fingers on Solar Cells by Refractive Free-Form Surfacescitations
Places of action
Organizations | Location | People |
---|
article
Modeling and Fundamental Dynamics of Vacuum, Gas, and Antisolvent Quenching for Scalable Perovskite Processes
Abstract
<jats:title>Abstract</jats:title><jats:p>Hybrid perovskite photovoltaics (PVs) promise cost‐effective fabrication with large‐scale solution‐based manufacturing processes as well as high power conversion efficiencies. Almost all of today's high‐performance solution‐processed perovskite absorber films rely on so‐called quenching techniques that rapidly increase supersaturation to induce a prompt crystallization. However, to date, there are no metrics for comparing results obtained with different quenching methods. In response, the first quantitative modeling framework for gas quenching, anti‐solvent quenching, and vacuum quenching is developed herein. Based on dynamic thickness measurements in a vacuum chamber, previous works on drying dynamics, and commonly known material properties, a detailed analysis of mass transfer dynamics is performed for each quenching technique. The derived models are delivered along with an open‐source software framework that is modular and extensible. Thereby, a deep understanding of the impact of each process parameter on mass transfer dynamics is provided. Moreover, the supersaturation rate at critical concentration is proposed as a decisive benchmark of quenching effectiveness, yielding ≈ 10<jats:sup>−3</jats:sup> − 10<jats:sup>−1</jats:sup>s<jats:sup>−1</jats:sup> for vacuum quenching, ≈ 10<jats:sup>−5</jats:sup> − 10<jats:sup>−3</jats:sup>s<jats:sup>−1</jats:sup> for static gas quenching, ≈ 10<jats:sup>−2</jats:sup> − 10<jats:sup>0</jats:sup>s<jats:sup>−1</jats:sup> for dynamic gas quenching and ≈ 10<jats:sup>2</jats:sup>s<jats:sup>−1</jats:sup> for antisolvent quenching. This benchmark fosters transferability and scalability of hybrid perovskite fabrication, transforming the “art of device making” to well‐defined process engineering.</jats:p>