Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Tao, Xudong

  • Google
  • 3
  • 23
  • 36

European Commission

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2024Light-Based 3D Multi-Material Printing of Micro-Structured Bio-Shaped, Conducting and Dry Adhesive Electrodes for Bioelectronics.citations
  • 2024Light-Based 3D Multi-Material Printing of Micro-Structured Bio-Shaped, Conducting and Dry Adhesive Electrodes for Bioelectronics18citations
  • 2024Light‐Based 3D Multi‐Material Printing of Micro‐Structured Bio‐Shaped, Conducting and Dry Adhesive Electrodes for Bioelectronics18citations

Places of action

Chart of shared publication
Dominguez-Alfaro, Antonio
2 / 5 shared
Mecerreyes, David
2 / 24 shared
Vassardanis, Nikolaos
3 / 3 shared
Serrano, Ruben Ruiz-Mateos
1 / 1 shared
Picchio, Matias L.
2 / 2 shared
Dimov, Ivan
3 / 3 shared
Gallastegui, Antonela
3 / 7 shared
Malliaras, George G.
2 / 5 shared
Mitoudi-Vagourdi, Eleni
1 / 1 shared
De Lacalle, Jon Lopez
1 / 1 shared
Lopez-Larrea, Naroa
1 / 1 shared
Domínguez Alfaro, Antonio
1 / 5 shared
Mecerreyes Molero, David
1 / 19 shared
López De Lacalle Zabaleta, Jon
1 / 1 shared
Mitoudi Vagourdi, Eleni
1 / 2 shared
López Larrea, Naroa
1 / 1 shared
Picchio, Matías L.
1 / 4 shared
Ruiz-Mateos Serrano, Ruben
1 / 1 shared
Mitoudivagourdi, Eleni
1 / 1 shared
Serrano, Ruben Ruizmateos
1 / 1 shared
Lopezlarrea, Naroa
1 / 2 shared
Malliaras, George
1 / 2 shared
Lacalle, Jon Lopez De
1 / 1 shared
Chart of publication period
2024

Co-Authors (by relevance)

  • Dominguez-Alfaro, Antonio
  • Mecerreyes, David
  • Vassardanis, Nikolaos
  • Serrano, Ruben Ruiz-Mateos
  • Picchio, Matias L.
  • Dimov, Ivan
  • Gallastegui, Antonela
  • Malliaras, George G.
  • Mitoudi-Vagourdi, Eleni
  • De Lacalle, Jon Lopez
  • Lopez-Larrea, Naroa
  • Domínguez Alfaro, Antonio
  • Mecerreyes Molero, David
  • López De Lacalle Zabaleta, Jon
  • Mitoudi Vagourdi, Eleni
  • López Larrea, Naroa
  • Picchio, Matías L.
  • Ruiz-Mateos Serrano, Ruben
  • Mitoudivagourdi, Eleni
  • Serrano, Ruben Ruizmateos
  • Lopezlarrea, Naroa
  • Malliaras, George
  • Lacalle, Jon Lopez De
OrganizationsLocationPeople

article

Light‐Based 3D Multi‐Material Printing of Micro‐Structured Bio‐Shaped, Conducting and Dry Adhesive Electrodes for Bioelectronics

  • Dominguez-Alfaro, Antonio
  • Mitoudivagourdi, Eleni
  • Mecerreyes, David
  • Vassardanis, Nikolaos
  • Serrano, Ruben Ruizmateos
  • Lopezlarrea, Naroa
  • Malliaras, George
  • Picchio, Matias L.
  • Dimov, Ivan
  • Gallastegui, Antonela
  • Lacalle, Jon Lopez De
  • Tao, Xudong
Abstract

<jats:title>Abstract</jats:title><jats:p>In this work, a new method of multi‐material printing in one‐go using a commercially available 3D printer is presented. The approach is simple and versatile, allowing the manufacturing of multi‐material layered or multi‐material printing in the same layer. To the best of the knowledge, it is the first time that 3D printed Poly(3,4‐ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) micro‐patterns combining different materials are reported, overcoming mechanical stability issues. Moreover, the conducting ink is engineered to obtain stable in‐time materials while retaining sub‐100 µm resolution. Micro‐structured bio‐shaped protuberances are designed and 3D printed as electrodes for electrophysiology. Moreover, these microstructures are combined with polymerizable deep eutectic solvents (polyDES) as functional additives, gaining adhesion and ionic conductivity. As a result of the novel electrodes, low skin impedance values showed suitable performance for electromyography recording on the forearm. Finally, this concluded that the use of polyDES conferred stability over time, allowing the usability of the electrode 90 days after fabrication without losing its performance. All in all, this demonstrated a very easy‐to‐make procedure that allows printing PEDOT:PSS on soft, hard, and/or flexible functional substrates, opening up a new paradigm in the manufacturing of conducting multi‐functional materials for the field of bioelectronics and wearables.</jats:p>

Topics
  • impedance spectroscopy
  • microstructure
  • layered