People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Mecerreyes, David
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (24/24 displayed)
- 2024Piperazinium Poly(Ionic Liquid)s as Solid Electrolytes for Lithium Batteriescitations
- 2024Light-Based 3D Multi-Material Printing of Micro-Structured Bio-Shaped, Conducting and Dry Adhesive Electrodes for Bioelectronics.
- 2024Light‐Based 3D Multi‐Material Printing of Micro‐Structured Bio‐Shaped, Conducting and Dry Adhesive Electrodes for Bioelectronicscitations
- 2023Dual redox-active porous polyimides as high performance and versatile electrode material for next-generation batteriescitations
- 2022Natural Deep Eutectic Solvents Based on Choline Chloride and Phenolic Compounds as Efficient Bioadhesives and Corrosion Protectorscitations
- 2022Fast Visible-Light Photopolymerization in the Presence of Multiwalled Carbon Nanotubes: Toward 3D Printing Conducting Nanocompositescitations
- 2020Toward High‐Energy‐Density Lithium Metal Batteries: Opportunities and Challenges for Solid Organic Electrolytescitations
- 2020Tuning the properties of a UV-polymerized, cross-linked solid polymer electrolyte for lithium batteriescitations
- 2020Influence of the cyclic vs. linear carbonate segments in the properties and performance of CO2-sourced polymer electrolytes for lithium batteriescitations
- 2018Biodegradable Polycarbonate Iongels for Electrophysiology Measurements.
- 2018Three-Dimensional conductive scaffolds as neural prostheses based on carbon nanotubes and polypyrrolecitations
- 2018Mixing poly(ionic liquid)s and ionic liquids with different cyano anionscitations
- 2018New electroactive macromonomers and multi-responsive PEDOT graft copolymerscitations
- 2017Novel Lithium Battery Single-Ion Block Copolymer Electrolytes based on Poly(Ethylene Oxide) and Methacrylic Sulfonamide
- 2017New Families of Single-Ion Block Copolymer Electrolytes based on Poly(Ethylene Oxide) and Methacrylic Sulfonamide for Lithium Batteries
- 2017Effect of the fullerene in the properties of thin PEDOT/C60films obtained by co-electrodepositioncitations
- 2017Preparation and characterization of gel polymer electrolytes using poly(ionic liquids) and high lithium salt concentration ionic liquidscitations
- 2014Post-polymerization modification and organocatalysis using reactive statistical poly(ionic liquid)-based copolymerscitations
- 2013Polymeric ionic liquids with mixtures of counter-anions: a new straightforward strategy for designing pyrrolidinium-based CO2 separation membranescitations
- 2010Parylene nanocomposites using modified magnetic nanoparticlescitations
- 2007Structure and properties of a semifluorinated diblock copolymer modified epoxy blendcitations
- 2000Ring-Opening Polymerization of γ-bromo-ε-caprolactone : A novel route to functionalized aliphatic polyesterscitations
- 2000Ring-opening polymerization of 6-hydroxynon-8-enoic acid lactone : Novel biodegradable copolymers containing allyl pendent groups
- 2000First example of an unsymmetrical difunctional monomer polymerizable by two living/controlled methods
Places of action
Organizations | Location | People |
---|
article
Light‐Based 3D Multi‐Material Printing of Micro‐Structured Bio‐Shaped, Conducting and Dry Adhesive Electrodes for Bioelectronics
Abstract
<jats:title>Abstract</jats:title><jats:p>In this work, a new method of multi‐material printing in one‐go using a commercially available 3D printer is presented. The approach is simple and versatile, allowing the manufacturing of multi‐material layered or multi‐material printing in the same layer. To the best of the knowledge, it is the first time that 3D printed Poly(3,4‐ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) micro‐patterns combining different materials are reported, overcoming mechanical stability issues. Moreover, the conducting ink is engineered to obtain stable in‐time materials while retaining sub‐100 µm resolution. Micro‐structured bio‐shaped protuberances are designed and 3D printed as electrodes for electrophysiology. Moreover, these microstructures are combined with polymerizable deep eutectic solvents (polyDES) as functional additives, gaining adhesion and ionic conductivity. As a result of the novel electrodes, low skin impedance values showed suitable performance for electromyography recording on the forearm. Finally, this concluded that the use of polyDES conferred stability over time, allowing the usability of the electrode 90 days after fabrication without losing its performance. All in all, this demonstrated a very easy‐to‐make procedure that allows printing PEDOT:PSS on soft, hard, and/or flexible functional substrates, opening up a new paradigm in the manufacturing of conducting multi‐functional materials for the field of bioelectronics and wearables.</jats:p>