Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Kanbargi, Nihal

  • Google
  • 1
  • 9
  • 4

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2023Enhancing Composite Toughness Through Hierarchical Interphase Formation4citations

Places of action

Chart of shared publication
Naskar, Amit K.
1 / 1 shared
Bowland, Christopher C.
1 / 2 shared
Sohail, Tanvir
1 / 2 shared
Rohewal, Sargun S.
1 / 1 shared
Toomey, Michael D.
1 / 1 shared
Checa, Marti
1 / 3 shared
Kearney, Logan T.
1 / 2 shared
Damron, Joshua T.
1 / 1 shared
Collins, Liam
1 / 8 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Naskar, Amit K.
  • Bowland, Christopher C.
  • Sohail, Tanvir
  • Rohewal, Sargun S.
  • Toomey, Michael D.
  • Checa, Marti
  • Kearney, Logan T.
  • Damron, Joshua T.
  • Collins, Liam
OrganizationsLocationPeople

article

Enhancing Composite Toughness Through Hierarchical Interphase Formation

  • Naskar, Amit K.
  • Bowland, Christopher C.
  • Sohail, Tanvir
  • Rohewal, Sargun S.
  • Toomey, Michael D.
  • Checa, Marti
  • Kearney, Logan T.
  • Kanbargi, Nihal
  • Damron, Joshua T.
  • Collins, Liam
Abstract

<jats:title>Abstract</jats:title><jats:p>High strength and ductility are highly desired in fiber‐reinforced composites, yet achieving both simultaneously remains elusive. A hierarchical architecture is developed utilizing high aspect ratio chemically transformable thermoplastic nanofibers that form covalent bonding with the matrix to toughen the fiber‐matrix interphase. The nanoscale fibers are electrospun on the micrometer‐scale reinforcing carbon fiber, creating a physically intertwined, randomly oriented scaffold. Unlike conventional covalent bonding of matrix molecules with reinforcing fibers, here, the nanofiber scaffold is utilized ‒ interacting non‐covalently with core fiber but bridging covalently with polymer matrix ‒ to create a high volume fraction of immobilized matrix or interphase around core reinforcing elements. This mechanism enables efficient fiber‐matrix stress transfer and enhances composite toughness. Molecular dynamics simulation reveals enhancement of the fiber‐matrix adhesion facilitated by nanofiber‐aided hierarchical bonding with the matrix. The elastic modulus contours of interphase regions obtained from atomic force microscopy clearly indicate the formation of stiffer interphase. These nanoengineered composites exhibit a ≈60% and ≈100% improved in‐plane shear strength and toughness, respectively. This approach opens a new avenue for manufacturing toughened high‐performance composites.</jats:p>

Topics
  • impedance spectroscopy
  • Carbon
  • simulation
  • atomic force microscopy
  • molecular dynamics
  • strength
  • composite
  • thermoplastic
  • ductility