Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Mm, Giraud-Guille

  • Google
  • 1
  • 16
  • 5

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2024Acidic Osteoid Templates the Plywood Structure of Bone Tissue.5citations

Places of action

Chart of shared publication
Zaslansky, Paul
1 / 25 shared
Robin, M.
1 / 1 shared
Nassif, Nadine
1 / 8 shared
Djediat, C.
1 / 1 shared
Azaïs, T.
1 / 1 shared
Chareyron, C.
1 / 1 shared
Jm, Krafft
1 / 1 shared
Bardouil, A.
1 / 1 shared
Baccile, N.
1 / 1 shared
Haye, B.
1 / 1 shared
Genois, I.
1 / 1 shared
Artzner, F.
1 / 2 shared
Fratzl, P.
1 / 10 shared
Zizak, I.
1 / 13 shared
Costentin, G.
1 / 2 shared
Selmane, M.
1 / 3 shared
Chart of publication period
2024

Co-Authors (by relevance)

  • Zaslansky, Paul
  • Robin, M.
  • Nassif, Nadine
  • Djediat, C.
  • Azaïs, T.
  • Chareyron, C.
  • Jm, Krafft
  • Bardouil, A.
  • Baccile, N.
  • Haye, B.
  • Genois, I.
  • Artzner, F.
  • Fratzl, P.
  • Zizak, I.
  • Costentin, G.
  • Selmane, M.
OrganizationsLocationPeople

article

Acidic Osteoid Templates the Plywood Structure of Bone Tissue.

  • Zaslansky, Paul
  • Robin, M.
  • Mm, Giraud-Guille
  • Nassif, Nadine
  • Djediat, C.
  • Azaïs, T.
  • Chareyron, C.
  • Jm, Krafft
  • Bardouil, A.
  • Baccile, N.
  • Haye, B.
  • Genois, I.
  • Artzner, F.
  • Fratzl, P.
  • Zizak, I.
  • Costentin, G.
  • Selmane, M.
Abstract

Bone is created by osteoblasts that secrete osteoid after which an ordered texture emerges, followed by mineralization. Plywood geometries are a hallmark of many trabecular and cortical bones, yet the origin of this texturing in vivo has never been shown. Nevertheless, extensive in vitro work revealed how plywood textures of fibrils can emerge from acidic molecular cholesteric collagen mesophases. This study demonstrates in sheep, which is the preferred model for skeletal orthopaedic research, that the deeper non-fibrillar osteoid is organized in a liquid-crystal cholesteric geometry. This basophilic domain, rich in acidic glycosaminoglycans, exhibits low pH which presumably fosters mesoscale collagen molecule ordering in vivo. The results suggest that the collagen fibril motif of twisted plywood matures slowly through self-assembly thermodynamically driven processes as proposed by the Bouligand theory of biological analogues of liquid crystals. Understanding the steps of collagen patterning in osteoid-maturation processes may shed new light on bone pathologies that emerge from collagen physico-chemical maturation imbalances.

Topics
  • impedance spectroscopy
  • theory
  • texture
  • self-assembly
  • liquid crystal