People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Fuchs, Till
University of Giessen
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (14/14 displayed)
- 2024SEI growth on Lithium metal anodes in solid-state batteries quantified with coulometric titration time analysis
- 2023Non‐Linear Kinetics of The Lithium Metal Anode on Li6PS5Cl at High Current Density: Dendrite Growth and the Role of Lithium Microstructure on Creepcitations
- 2023Overcoming Anode Instability in Solid‐State Batteries through Control of the Lithium Metal Microstructurecitations
- 2023Current‐Dependent Lithium Metal Growth Modes in “Anode‐Free” Solid‐State Batteries at the Cu|LLZO Interfacecitations
- 2023SEI growth on Lithium metal anodes in solid-state batteries quantified with coulometric titration time analysiscitations
- 2023Kinetics and Pore Formation of the Sodium Metal Anode on NASICON‐Type Na$_{3.4}$ Zr$_2$Si$_{2.4}$P$_{0.6}$O$_{12}$ for Sodium Solid‐State Batteries
- 2023Morphological Challenges at the Interface of Lithium Metal and Electrolytes in Garnet-type Solid-State Batteries
- 2023Deposition of Sodium Metal at the Copper‐NaSICON Interface for Reservoir‐Free Solid‐State Sodium Batteriescitations
- 2023Evaluating the Use of Critical Current Density Tests of Symmetric Lithium Transference Cells with Solid Electrolytescitations
- 2022In Situ Investigation of Lithium Metal–Solid Electrolyte Anode Interfaces with ToF‐SIMScitations
- 2022Increasing the Pressure‐Free Stripping Capacity of the Lithium Metal Anode in Solid‐State‐Batteries by Carbon Nanotubescitations
- 2022Kinetics and Pore Formation of the Sodium Metal Anode on NASICON‐Type Na$_{3.4}$ Zr$_2$Si$_{2.4}$P$_{0.6}$O$_{12}$ for Sodium Solid‐State Batteriescitations
- 2022Morphological Challenges at the Interface of Lithium Metal and Electrolytes in Garnet-type Solid-State Batteries
- 2021Working principle of an ionic liquid interlayer during pressureless lithium stripping on Li6.25Al0.25La3Zr2O12 (LLZO) garnet‐type solid electrolytecitations
Places of action
Organizations | Location | People |
---|
article
Non‐Linear Kinetics of The Lithium Metal Anode on Li6PS5Cl at High Current Density: Dendrite Growth and the Role of Lithium Microstructure on Creep
Abstract
<jats:title>Abstract</jats:title><jats:p>Interfacial instability, viz., pore formation in the lithium metal anode (LMA) during discharge leading to high impedance, current focusing induced solid–electrolyte (SE) fracture during charging, and formation/behaviour of the solid–electrolyte interphase (SEI), at the anode, is one of the major hurdles in the development of solid‐state batteries (SSBs). Also, understanding cell polarization behaviour at high current density is critical to achieving the goal of fast‐charging battery and electric vehicle. Herein, via in situ electrochemical scanning electron microscopy (SEM) measurements, performed with freshly deposited lithium microelectrodes on transgranularly fractured fresh Li6PS5Cl (LPSCl), the LiǀLPSCl interface kinetics are investigated beyond the linear regime. Even at relatively small overvoltages of a few mV, the LiǀLPSCl interface shows non‐linear kinetics. The interface kinetics possibly involve multiple rate‐limiting processes, i.e., ion transport across the SEI and SE|SEI interfaces, as well as charge transfer across the LiǀSEI interface. The total polarization resistance <jats:italic>R</jats:italic><jats:sub>P</jats:sub> of the microelectrode interface is determined to be ≈ 0.8 Ω cm<jats:sup>2</jats:sup>. It is further shown that the nanocrystalline lithium microstructure can lead to a stable LiǀSE interface via Coble creep along with uniform stripping. Also, spatially resolved lithium deposition, i.e., at grain surface flaws, grain boundaries, and flaw‐free surfaces, indicates exceptionally high mechanical endurance of flaw‐free surfaces toward cathodic load (>150 mA cm<jats:sup>−2</jats:sup>). This highlights the prominent role of surface defects in dendrite growth.</jats:p>