Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Fuchs, Till

  • Google
  • 14
  • 33
  • 382

University of Giessen

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (14/14 displayed)

  • 2024SEI growth on Lithium metal anodes in solid-state batteries quantified with coulometric titration time analysiscitations
  • 2023Non‐Linear Kinetics of The Lithium Metal Anode on Li6PS5Cl at High Current Density: Dendrite Growth and the Role of Lithium Microstructure on Creep9citations
  • 2023Overcoming Anode Instability in Solid‐State Batteries through Control of the Lithium Metal Microstructure35citations
  • 2023Current‐Dependent Lithium Metal Growth Modes in “Anode‐Free” Solid‐State Batteries at the Cu|LLZO Interface55citations
  • 2023SEI growth on Lithium metal anodes in solid-state batteries quantified with coulometric titration time analysis46citations
  • 2023Kinetics and Pore Formation of the Sodium Metal Anode on NASICON‐Type Na$_{3.4}$ Zr$_2$Si$_{2.4}$P$_{0.6}$O$_{12}$ for Sodium Solid‐State Batteriescitations
  • 2023Morphological Challenges at the Interface of Lithium Metal and Electrolytes in Garnet-type Solid-State Batteriescitations
  • 2023Deposition of Sodium Metal at the Copper‐NaSICON Interface for Reservoir‐Free Solid‐State Sodium Batteries19citations
  • 2023Evaluating the Use of Critical Current Density Tests of Symmetric Lithium Transference Cells with Solid Electrolytes25citations
  • 2022In Situ Investigation of Lithium Metal–Solid Electrolyte Anode Interfaces with ToF‐SIMS66citations
  • 2022Increasing the Pressure‐Free Stripping Capacity of the Lithium Metal Anode in Solid‐State‐Batteries by Carbon Nanotubes52citations
  • 2022Kinetics and Pore Formation of the Sodium Metal Anode on NASICON‐Type Na$_{3.4}$ Zr$_2$Si$_{2.4}$P$_{0.6}$O$_{12}$ for Sodium Solid‐State Batteries44citations
  • 2022Morphological Challenges at the Interface of Lithium Metal and Electrolytes in Garnet-type Solid-State Batteriescitations
  • 2021Working principle of an ionic liquid interlayer during pressureless lithium stripping on Li6.25Al0.25La3Zr2O12 (LLZO) garnet‐type solid electrolyte31citations

Places of action

Chart of shared publication
Janek, Jürgen
12 / 54 shared
Riegger, Luise M.
3 / 3 shared
Otto, Svenja-K.
2 / 3 shared
Henss, Anja
3 / 11 shared
Aktekin, Burak
2 / 7 shared
Krempaszky, Christian
2 / 3 shared
Mogwitz, Boris
3 / 5 shared
Singh, Dheeraj Kumar
2 / 3 shared
Richter, Felix H.
5 / 9 shared
Burkhardt, Simon
4 / 4 shared
Haslam, Catherine G.
3 / 3 shared
Lerch, Christian
2 / 2 shared
Sakamoto, Jeff
3 / 9 shared
Becker, Juri
1 / 1 shared
Heiliger, Christian
2 / 4 shared
Guillon, Olivier
2 / 26 shared
Rohnke, Marcus
3 / 25 shared
Sann, Joachim
2 / 8 shared
Ding, Ziming
3 / 5 shared
Ma, Qianli
3 / 8 shared
Fattakhova-Rohlfing, Dina
2 / 20 shared
Eckhardt, Janis Kevin
2 / 5 shared
Ortmann, Till
3 / 5 shared
Tietz, Frank
3 / 13 shared
Kübel, Christian
3 / 44 shared
Eckhardt, Janis K.
1 / 1 shared
Kayser, Sven
1 / 2 shared
Schweitzer, Pascal
1 / 3 shared
Otto, Svenjak.
1 / 1 shared
Krauskopf, Thorben
1 / 1 shared
Moy, Alexandra C.
1 / 1 shared
Otto, Svenjakatharina
1 / 1 shared
Passerini, Stefano
1 / 34 shared
Chart of publication period
2024
2023
2022
2021

Co-Authors (by relevance)

  • Janek, Jürgen
  • Riegger, Luise M.
  • Otto, Svenja-K.
  • Henss, Anja
  • Aktekin, Burak
  • Krempaszky, Christian
  • Mogwitz, Boris
  • Singh, Dheeraj Kumar
  • Richter, Felix H.
  • Burkhardt, Simon
  • Haslam, Catherine G.
  • Lerch, Christian
  • Sakamoto, Jeff
  • Becker, Juri
  • Heiliger, Christian
  • Guillon, Olivier
  • Rohnke, Marcus
  • Sann, Joachim
  • Ding, Ziming
  • Ma, Qianli
  • Fattakhova-Rohlfing, Dina
  • Eckhardt, Janis Kevin
  • Ortmann, Till
  • Tietz, Frank
  • Kübel, Christian
  • Eckhardt, Janis K.
  • Kayser, Sven
  • Schweitzer, Pascal
  • Otto, Svenjak.
  • Krauskopf, Thorben
  • Moy, Alexandra C.
  • Otto, Svenjakatharina
  • Passerini, Stefano
OrganizationsLocationPeople

article

Non‐Linear Kinetics of The Lithium Metal Anode on Li6PS5Cl at High Current Density: Dendrite Growth and the Role of Lithium Microstructure on Creep

  • Janek, Jürgen
  • Krempaszky, Christian
  • Fuchs, Till
  • Mogwitz, Boris
  • Singh, Dheeraj Kumar
Abstract

<jats:title>Abstract</jats:title><jats:p>Interfacial instability, viz., pore formation in the lithium metal anode (LMA) during discharge leading to high impedance, current focusing induced solid–electrolyte (SE) fracture during charging, and formation/behaviour of the solid–electrolyte interphase (SEI), at the anode, is one of the major hurdles in the development of solid‐state batteries (SSBs). Also, understanding cell polarization behaviour at high current density is critical to achieving the goal of fast‐charging battery and electric vehicle. Herein, via in situ electrochemical scanning electron microscopy (SEM) measurements, performed with freshly deposited lithium microelectrodes on transgranularly fractured fresh Li6PS5Cl (LPSCl), the LiǀLPSCl interface kinetics are investigated beyond the linear regime. Even at relatively small overvoltages of a few mV, the LiǀLPSCl interface shows non‐linear kinetics. The interface kinetics possibly involve multiple rate‐limiting processes, i.e., ion transport across the SEI and SE|SEI interfaces, as well as charge transfer across the LiǀSEI interface. The total polarization resistance <jats:italic>R</jats:italic><jats:sub>P</jats:sub> of the microelectrode interface is determined to be ≈ 0.8 Ω cm<jats:sup>2</jats:sup>. It is further shown that the nanocrystalline lithium microstructure can lead to a stable LiǀSE interface via Coble creep along with uniform stripping. Also, spatially resolved lithium deposition, i.e., at grain surface flaws, grain boundaries, and flaw‐free surfaces, indicates exceptionally high mechanical endurance of flaw‐free surfaces toward cathodic load (&gt;150 mA cm<jats:sup>−2</jats:sup>). This highlights the prominent role of surface defects in dendrite growth.</jats:p>

Topics
  • Deposition
  • density
  • impedance spectroscopy
  • pore
  • surface
  • grain
  • scanning electron microscopy
  • Lithium
  • current density
  • creep