People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Plum, Eric
University of Southampton
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (8/8 displayed)
- 2023Microwatt volatile optical bistability via nanomechanical nonlinearitycitations
- 2023Broadband total absorption of light
- 2020Exotic effects in nanomechanical metamaterials
- 2018Optical bistability in shape-memory nanowire metamaterial arraycitations
- 2017Optical plasmonic response of niobium around the superconducting transition temperature
- 2017Merging metamaterial and optical fiber technologies
- 2017Fibre-coupled photonic metadevices
- 2011Nanostructured photonic metamaterials: functionalities underpinned by metamolecular interactions
Places of action
Organizations | Location | People |
---|
article
Microwatt volatile optical bistability via nanomechanical nonlinearity
Abstract
<p>Metastable optically controlled devices (optical flip-flops) are needed in data storage, signal processing, and displays. Although nonvolatile memory relying on phase transitions in chalcogenide glasses has been widely used for optical data storage, beyond that, weak optical nonlinearities have hindered the development of low-power bistable devices. This work reports a new type of volatile optical bistability in a hybrid nano-optomechanical device, comprising a pair of anchored nanowires decorated with plasmonic metamolecules. The nonlinearity and bistability reside in the mechanical properties of the acoustically driven nanowires and are transduced to the optical response by reconfiguring the plasmonic metamolecules. The device can be switched between bistable optical states with microwatts of optical power and its volatile memory can be erased by removing the acoustic signal. The demonstration of hybrid nano-optomechanical bistability opens new opportunities to develop low-power optical bistable devices.</p>