People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Alam, Firoz
University of Manchester
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (13/13 displayed)
- 2024Doping Up the Light: A Review of A/B-Site Doping in Metal Halide Perovskite Nanocrystals for Next-Generation LEDs.
- 2023A Low‐Temperature Synthetic Route Toward a High‐Entropy 2D Hexernary Transition Metal Dichalcogenide for Hydrogen Evolution Electrocatalysiscitations
- 2023A Low‐Temperature Synthetic Route Toward a High‐Entropy 2D Hexernary Transition Metal Dichalcogenide for Hydrogen Evolution Electrocatalysiscitations
- 2023The race between complicated multiple cation/anion compositions and stabilization of FAPbI3 for halide perovskite solar cells
- 2022Investigating the effect of steric hindrance within CdS single-source precursors on the material properties of AACVD and spin coat-deposited CdS thin filmscitations
- 2021Direct Synthesis of Nanostructured Silver Antimony Sulfide Powders from Metal Xanthate Precursorscitations
- 2021Testing the Efficacy of the Synthesis of Iron Antimony Sulfide powders from Single Source Precursorscitations
- 2021Molecular Precursor Route to Bournonite (CuPbSbS3) Thin Films and Powderscitations
- 2021Structural investigations of α-MnS nanocrystals and thin films synthesised from manganese(II) xanthates by hot injection, solvent-less thermolysis and doctor blade routes.citations
- 2021Synthesis of molybdenum-doped rhenium disulfide alloy using aerosol-assisted chemical vapour depositioncitations
- 2021Testing the Efficacy of the Synthesis of Iron Antimony Sulfide Powders from Single Source Precursorscitations
- 2019Synthesis of Iron Sulfide Thin Films and Powders from New Xanthate Precursorscitations
- 2019A molecular precursor route to quaternary chalcogenide CFTS (Cu2FeSnS4) powders as potential solar absorber materialscitations
Places of action
Organizations | Location | People |
---|
article
A Low‐Temperature Synthetic Route Toward a High‐Entropy 2D Hexernary Transition Metal Dichalcogenide for Hydrogen Evolution Electrocatalysis
Abstract
High-entropy (HE) metal chalcogenides are a class of materials that have great potential in applications such as thermoelectrics and electrocatalysis. Layered 2D transition-metal dichalcogenides (TMDCs) are a sub-class of high entropy metal chalcogenides that have received little attention to date as their preparation currently involves complicated, energy-intensive, or hazardous synthetic steps. To address this, a low-temperature (500 °C) and rapid (1 h) single source precursor approach is successfully adopted to synthesize the hexernary high-entropy metal disulfide (MoWReMnCr)S2. (MoWReMnCr)S2 powders are characterized by powder X-ray diffraction (pXRD) and Raman spectroscopy, which confirmed that the material is comprised predominantly of a hexagonal phase. The surface oxidation states and elemental compositions are studied by X-ray photoelectron spectroscopy (XPS) whilst the bulk morphology and elemental stoichiometry with spatial distribution is determined by scanning electron microscopy (SEM) with elemental mapping information acquired from energy-dispersive X-ray (EDX) spectroscopy. The bulk, layered material is subsequently exfoliated to ultra-thin, several-layer 2D nanosheets by liquid-phase exfoliation (LPE). The resulting few-layer HE (MoWReMnCr)S2 nanosheets are found to contain a homogeneous elemental distribution of metals at the nanoscale by high angle annular dark field-scanning transmission electron microscopy (HAADF-STEM) with EDX mapping. Finally, (MoWReMnCr)S2 is demonstrated as a hydrogen evolution electrocatalyst and compared to 2H-MoS2 synthesized using the molecular precursor approach. (MoWReMnCr)S2 with 20% w/w of high-conductivity carbon black displays a low overpotential of 229 mV in 0.5 MH2SO4 to reach a current density of 10 mA cm−2, which is much lower than the overpotential of 362 mV for MoS2. From density functional theory calculations, it is hypothesised that the enhanced catalytic activity is due to activation of the basal plane upon incorporation of other elements into the 2H-MoS2 structure, in particular, the first row TMs Cr and Mn.