People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Stemper, Lukas
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (12/12 displayed)
- 2024Unraveling the potential of Cu addition and cluster hardening in Al-Mg-Si alloyscitations
- 2024Influence of Solidification Rate and Impurity Content on 5/7-Crossover Alloys
- 2024Metallographic Etching of Al–Mg–Zn–(Cu) Crossover Alloyscitations
- 2023Industry-oriented sample preparation with an in- ductively heated laboratory continuous casting plant for aluminum alloys
- 2023Fine-grained aluminium crossover alloy for high-temperature sheet formingcitations
- 2021Crossover alloys
- 2021Giant hardening response in AlMgZn(Cu) alloyscitations
- 2020Prototypic Lightweight Alloy Design for Stellar-Radiation Environmentscitations
- 2020Age-hardening response of AlMgZn alloys with Cu and Ag additionscitations
- 2019Industry-oriented sample preparation of 6xxx and 5xxx aluminum alloys in laboratory scale
- 2019Age-hardening of high pressure die casting AlMg alloys with Zn and combined Zn and Cu additionscitations
- 2017Modifizierte 5xxx-Aluminiumknetlegierungen für den Einsatz als Strukturgusswerkstoff in der Automobilindustrie
Places of action
Organizations | Location | People |
---|
article
Prototypic Lightweight Alloy Design for Stellar-Radiation Environments
Abstract
The existing literature data shows that conventional aluminium alloys may not be suitable for use in stellar-radiation environments as their hardening phases are prone to dissolve upon exposure to energetic irradiation, resulting in alloy softening which may reduce the lifetime of such materials impairing future human-based space missions. The innovative methodology of crossover alloying is herein used to synthesize an aluminium alloy with a radiation resistant hardening phase. This alloy—a crossover of 5xxx and 7xxx series Al-alloys—is subjected to extreme heavy ion irradiations in situ within a TEM up to a dose of 1 dpa and major experimental observations are made: the Mg32(Zn,Al)49 hardening precipitates (denoted as T-phase) for this alloy system surprisingly survive the extreme irradiation conditions, no cavities are found to nucleate and displacement damage is observed to develop in the form of black-spots. This discovery indicates that a high phase fraction of hardening precipitates is a crucial parameter for achieving superior radiation tolerance. Based on such observations, this current work sets new guidelines for the design of metallic alloys for space exploration.