Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Kakavelakis, George

  • Google
  • 4
  • 24
  • 393

Hellenic Mediterranean University

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (4/4 displayed)

  • 2024High‐Performance Perovskite Solar Cells with Zwitterion‐Capped‐ZnO Quantum Dots as Electron Transport Layer and <scp>NH<sub>4</sub></scp>X (X = F, Cl, Br) Assisted Interfacial Engineering9citations
  • 2020Metal Halide Perovskites for High‐Energy Radiation Detection206citations
  • 2019Inorganic and Hybrid Perovskite Based Laser Devices: A Review122citations
  • 2016Plasmonic backscattering effect in high-efficient organic photovoltaic devices56citations

Places of action

Chart of shared publication
Runjhun, Rashmi
1 / 2 shared
Eickemeyer, Felix
1 / 1 shared
Drużyński, Zygmunt
1 / 1 shared
Wolska-Pietkiewicz, Małgorzata
1 / 4 shared
Zakeeruddin, Shaik Mohammed
1 / 4 shared
Grätzel, Michael
1 / 38 shared
Baumeler, Thomas
1 / 3 shared
Mensi, Mounir Driss
1 / 1 shared
Lewiński, Janusz
1 / 11 shared
Škorjanc, Viktor
1 / 2 shared
Krishna, Anurag
1 / 5 shared
Anthopoulos, Thomas D.
1 / 33 shared
Gedda, Murali
1 / 5 shared
Kymakis, Emmanuel
2 / 14 shared
Panagiotopoulos, Apostolis
1 / 1 shared
Petridis, Konstantinos
2 / 5 shared
Maksudov, Temur
1 / 3 shared
Panagiotopoulos, Apostolos
1 / 2 shared
Stylianakis, Minas
1 / 4 shared
Kanaras, Antonios
1 / 6 shared
Heuer-Jungemann, Amelie
1 / 4 shared
Vangelidis, Ioannis
1 / 1 shared
Stratakis, Emmanuel
1 / 15 shared
Lidorikis, Elefterios
1 / 4 shared
Chart of publication period
2024
2020
2019
2016

Co-Authors (by relevance)

  • Runjhun, Rashmi
  • Eickemeyer, Felix
  • Drużyński, Zygmunt
  • Wolska-Pietkiewicz, Małgorzata
  • Zakeeruddin, Shaik Mohammed
  • Grätzel, Michael
  • Baumeler, Thomas
  • Mensi, Mounir Driss
  • Lewiński, Janusz
  • Škorjanc, Viktor
  • Krishna, Anurag
  • Anthopoulos, Thomas D.
  • Gedda, Murali
  • Kymakis, Emmanuel
  • Panagiotopoulos, Apostolis
  • Petridis, Konstantinos
  • Maksudov, Temur
  • Panagiotopoulos, Apostolos
  • Stylianakis, Minas
  • Kanaras, Antonios
  • Heuer-Jungemann, Amelie
  • Vangelidis, Ioannis
  • Stratakis, Emmanuel
  • Lidorikis, Elefterios
OrganizationsLocationPeople

article

Metal Halide Perovskites for High‐Energy Radiation Detection

  • Kakavelakis, George
  • Anthopoulos, Thomas D.
  • Gedda, Murali
  • Kymakis, Emmanuel
  • Panagiotopoulos, Apostolis
  • Petridis, Konstantinos
Abstract

<jats:title>Abstract</jats:title><jats:p>Metal halide perovskites (MHPs) have emerged as a frontrunner semiconductor technology for application in third generation photovoltaics while simultaneously making significant strides in other areas of optoelectronics. Photodetectors are one of the latest additions in an expanding list of applications of this fascinating family of materials. The extensive range of possible inorganic and hybrid perovskites coupled with their processing versatility and ability to convert external stimuli into easily measurable optical/electrical signals makes them an auspicious sensing element even for the high‐energy domain of the electromagnetic spectrum. Key to this is the ability of MHPs to accommodate heavy elements while being able to form large, high‐quality crystals and polycrystalline layers, making them one of the most promising emerging X‐ray and <jats:italic>γ</jats:italic>‐ray detector technologies. Here, the fundamental principles of high‐energy radiation detection are reviewed with emphasis on recent progress in the emerging and fascinating field of metal halide perovskite‐based X‐ray and <jats:italic>γ</jats:italic>‐ray detectors. The review starts with a discussion of the basic principles of high‐energy radiation detection with focus on key performance metrics followed by a comprehensive summary of the recent progress in the field of perovskite‐based detectors. The article concludes with a discussion of the remaining challenges and future perspectives.</jats:p>

Topics
  • perovskite
  • impedance spectroscopy
  • semiconductor